Unit 5 - Review

Caarai	/ 24
Score:	/ 31

The first derivative of the function f is defined by $f'(x) = \sin(2x)$ for $0 < x \le 3$. On what intervals is f decreasing?

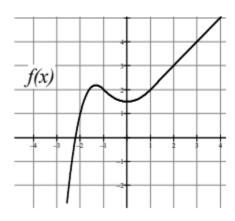
An ant is walking along the curve $x^2 + xy + y^2 = 19$. If the ant is moving to the **right** at the rate of 3 cm/sec, how fast is the ant moving up or down when the ant reaches the point (2, 3). Be sure you specify direction.

Let f be a function such that f''(x) > 0 for all x in the closed interval [0, 1]. Selected values of f are shown in the table below.

x	0.4	0.5	0.6	0.7
f(x)	5.76	5.46	5.29	5.14

Which of the following must be true about f'(0.5)?

(A)
$$f'(0.5) < -3$$


(B)
$$-3 < f'(0.5) < -1.7$$

(A)
$$f'(0.5) < -3$$
 (B) $-3 < f'(0.5) < -1.7$ (C) $-1.7 < f'(0.5) < -1.4$

(D)
$$-1.4 < f'(0.5) < 0$$

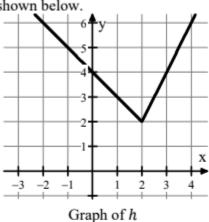
(E)
$$f'(0.5) > 0$$

Sketch the derivative of the given function.

A particle moves along the x-axis with velocity given by $v(t) = \frac{10\sin(0.4t^2)}{t^2-t+3}$ for time $0 \le t \le 3.5$ where t is measured in minutes, and v is measured in feet per minute.

- a. Find the acceleration of the particle at time t = 2.
- b. Is the particle moving to the left or right at t = 2? Justify your answer with specific values.

At time $t \ge 0$, the position of a particle moving along the x-axis is given by $x(t) = \frac{t^3}{3} + 2t + 2$. For what value of t in the interval [0,3] will the instantaneous velocity of the particle equal the average velocity of the particle from time t = 0 to time t = 3?


- (A) 1
- (B) $\sqrt{3}$ (C) $\sqrt{7}$
- (D) 3
- (E) 5

A rectangle is formed in Quadrant I with one side on the x-axis, another on the y-axis, and the corner opposite the origin on the graph $y = 9 - x^2$. Find the dimensions of the rectangle with the largest area.

The derivative of g is given by $g'(x) = x^3(4-x)(x-2)$. Find all relative extrema and justify your conclusions.

A particle's position along the y-axis is measured by $y(t) = t^3 - 2t^2 - 4t$ where t > 0. Find the intervals where the particle is slowing down.

7. The graph of the function h is shown below.

If f is the function given by f(x) = h(h(x)), what is the value of f'(1)?

- (A) 3
- (B) -1 (C) 5 (D) -4
- (E) -2
- . The third derivative of the function f is continuous on the interval (1,6). Values for f and its first three derivatives at x = 5 are given in the table below. What is $\lim_{x \to 5} \frac{f(x)}{(x-5)^2}$?

x	f(x)	f'(x)	f''(x)	f'''(x)
5	0	0	-1	6

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{5}$ (C) -1 (D) 6

- (E) The limit does not exist.