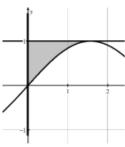
AP Calc. - AB/BC Semester 1 Review

Unit	8 -	Review
------	-----	--------

Score:	/(AB)30-(BC)35	Name:	
		· · · · · · · · · · · · · · · · · · ·	

The depth of the ocean just off the coast changes according the tides. The rate at which it is changing can be modeled by $R(t) = 2.12 \sin\left(\frac{\pi}{4}t\right)$, where R(t) is feet per hour and t is hours after 9:00 a.m. If the depth of the ocean is 12 feet at this particular spot, how deep will it be at 11:00 a.m.?

Traffic flow measures the number of cars that pass through an intersection per minute. It can be modeled by the function $f(t) = 10 + 8\cos\left(\frac{t}{3}\right)$ for $0 \le t \le 15$ where f(t) is measured in cars per minute and t is measured in minutes. Is the traffic flow increasing or decreasing at t = 10? Give a reason for your answer.


Let R be the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{2}$.

- Find the area of R.
- b. Find the volume of the solid generated when R is rotated about the vertical line x = -2.
- c. The region R is the base of a solid. For this solid, the cross sections perpendicular to the y-axis are semicircles. Find the volume of this solid.

The area of the region in the first quadrant bounded by the graph of $f(x) = \frac{\ln x}{x}$ and the lines x = 1 and x = e is

- (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) 1 (D) e (E) e

Setup integral(s) with respect to y that represent the area bounded by $y = \sin(x)$, y = 1, and x = 0. Do NOT evaluate.

Revolve the region bounded by the graphs of $y = -x^2$ and y = -1 about the line y = -1. Set up the integral for the volume of this solid, but do NOT evaluate.

Revolve the region bounded by the graphs of y = x - 2, x = 4, and y = -1 about the line x = 4. Set up the integral for the volume of this solid, but do NOT evaluate.

If the region enclosed by the y-axis, the curve $y = 4\sqrt{x}$, and the line y = 8 is revolved about the x-axis, the volume of the solid generated is

- (A) $\frac{32\pi}{3}$ (B) 128π (C) $\frac{128}{3}$ (D) 128 (E) $\frac{128\pi}{3}$

The average value of the function $f(x) = (x - 1)^2$ on the interval from x = 1 to x = 5 is

- (A) $-\frac{16}{3}$ (B) $\frac{16}{3}$ (C) $\frac{64}{3}$ (D) $\frac{66}{3}$ (E) $\frac{256}{3}$

Find the distance traveled (to three decimal places) from t = 1 to t = 5 seconds, for a particle whose velocity is given by $v(t) = t + \ln t$.

- (A) 6.000
- (B) 1.609 (C) 16.047
- (D) 0.800
- (E) 148.413

Calc. BC questions below:

Which of the following integrals gives the length of the curve $y = \sin x^2$ from x = 0 to $x = \frac{\pi}{5}$?

A.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + 2x \sin x^2} \, dx$$

B.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + \sin^2(x^2)} \, dx$$

C.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + 2x \cos x^2} \, dx$$

D.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + 2x \cos^2(x^2)} \, dx$$

E.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + 4x^2 \cos^2(x^2)} dx$$

The table below gives the values of f', the derivative of f. If f(4.2) = 3, what is the approximation of f(4.4) obtained by using Euler's method with 2 steps of equal size?

х	4.1	4.2	4.3	4.4
f'(x)	-0.2	-0.27	-0.32	-0.41