Ans. Key	/ - Unit	5 -	Review
----------	----------	-----	--------

Score: _____/ 31 Name:

The first derivative of the function f is defined by $f'(x) = \sin(2x)$ for $0 < x \le 3$. On what intervals is f decreasing?

An ant is walking along the curve $x^2 + xy + y^2 = 19$. If the ant is moving to the **right** at the rate of 3 cm/sec, how fast is the ant moving up or down when the ant reaches the point (2,3). Be sure you

Let f be a function such that f''(x) > 0 for all x in the closed interval [0, 1]. Selected values of f are shown in the table below.

x	0.4	0.5	0.6	0.7	
f(x)	5.76	5.46	5.29	5.14	

Which of the following must be true about f'(0.5)?

$$\frac{5.46 - 6.76}{0.5 - 0.4} = -3$$

$$\frac{5.29-5.46}{0.6-0.5}=-1.7$$

(A)
$$f'(0.5) < -3$$

(B)
$$-3 < f'(0.5) < -1.7$$
 (C) $-1.7 < f'(0.5) < -1.4$

(C)
$$-1.7 < f'(0.5) < -1.4$$

(D)
$$-1.4 < f'(0.5) < 0$$

(E)
$$f'(0.5) > 0$$

. Sketch the derivative of the given function.

f | pt zero at x=-1.5 +1 pt zero at x=0 +1 pt (anstant for x>1. +1 pt general shape af §'

AP Calc. - AB/BC Semester 1 Review

A particle moves along the x-axis with velocity given by $v(t) = \frac{10 \sin(0.4t^2)}{t^2 - t + 3}$ for time $0 \le t \le 3.5$ where t is measured in minutes, and v is measured in feet per minute.

a. Find the acceleration of the particle at time t = 2.

b. Is the particle moving to the left or right at t = 2? Justify your answer with specific values.

At time $t \ge 0$, the position of a particle moving along the x-axis is given by $x(t) = \frac{t^3}{3} + 2t + 2$. For what value of t in the interval [0,3] will the instantaneous velocity of the particle equal the average velocity of the particle from time t = 0 to time t = 3?

$$\frac{x(3)-x(0)}{3-o} = 5 \qquad x'(t) = t^{2} + \lambda$$

$$5 = t^{2} + \lambda$$

$$3 = t^{2}$$
(A) 1 (B) $\sqrt{3}$ (C) $\sqrt{7}$ (D) 3 (E) 5

A rectangle is formed in Quadrant I with one side on the x-axis, another on the y-axis, and the corner opposite the origin on the graph $y = 9 - x^2$. Find the dimensions of the rectangle with the largest area.

$$A = \times (9 - x^{2})$$
 $A = 9 \times (-x^{2})$
 $A = 9 \times (-$

The derivative of g is given by $g'(x) = x^3(4-x)(x-2)$. Find all relative extrema and justify your conclusions.

$$x=0$$
 $x=4$ $x=2$
 $x=0$ $x=4$ $x=2$
 $x=0$ $x=4$ $x=2$
 $x=0$ $x=4$ $x=2$
 $x=0$ $x=0$ $x=0$

Rel max at $x=0$ and $x=4$ because g' changes sign from positive to negative.

Rel min at $x=2$ because g' changes sign from negative to positive.

A particle's position along the y-axis is measured by $y(t) = t^3 - 2t^2 - 4t$ where t > 0. Find the intervals

5/(t)=6t-4 =0 +1 キャナニネ

t1	(0, 3/8)	ጓ	(3,2)	اد	(2, w)
Y	1	_	1	Ю	+
4")	0	+	+	+

. The graph of the function h is shown below.

The third derivative of the function f is continuous on the interval (1, 6). Values for f and its first three derivatives at x = 5 are given in the table below. What is $\lim_{x \to 5} \frac{f(x)}{(x-5)^2}$?

x	f(x)	f'(x)	f''(x)	f'''(x)
5	0	0	-1	6

$$\frac{9}{5} \rightarrow \lim_{x \to 5} \frac{\frac{5'(x)}{2(x-5)} - \frac{9}{0} \longrightarrow \lim_{x \to 5} \frac{5''(x)}{2} = \frac{-1}{2}$$

$$(A) \quad -\frac{1}{2}$$

- (B) $-\frac{1}{5}$
- (C) -1
- (D) 6
- (E) The limit does not exist.