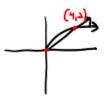
Unit 8 - Review

Score:	/ (AB)30-(BC)35
JUUIE.	/ (AD 30-(DC 33

Name:_____

1. The depth of the ocean just off the coast changes according the tides. The rate at which it is changing can be modeled by $R(t) = 2.12 \sin(\frac{\pi}{4}t)$, where R(t) is feet per hour and t is hours after 9:00 a.m. If the depth of the ocean is 12 feet at this particular spot, how deep will it be at 11:00 a.m.?


F3 pts

Traffic flow measures the number of cars that pass through an intersection per minute. It can be modeled by the function f(t) = 10 + 8 cos (t/3) for 0 ≤ t ≤ 15 where f(t) is measured in cars per minute and t is measured in minutes. Is the traffic flow increasing or decreasing at t = 10? Give a reason for your answer.

t3 pts

Increasing b/c &'(10) > 0.

- 4. Let R be the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{2}$.
- 2 pts
- a. Find the area of R. $A = \int_{a}^{4} (\sqrt{x} \frac{x}{2}) dx = 1.333$

b. Find the volume of the solid generated when R is rotated about the vertical line x = -2.

t2 0ts

$$V = M_0^2 \left[(23 + 2)^2 - (3^2 + 2)^2 \right] dy$$

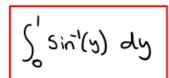
$$V = 30.159$$

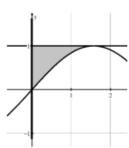
c. The region R is the base of a solid. For this solid, the cross sections perpendicular to the y-axis are semicircles. Find the volume of this solid.

2 pts

$$V = \int_{0}^{1} \frac{1}{2} \left(\frac{2y-y^{2}}{2} \right)^{2} dy \leq 0.4188$$

6. The area of the region in the first quadrant bounded by the graph of $f(x) = \frac{\ln x}{x}$ and the lines x = 1 and x = e is



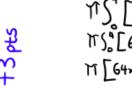

(C) 1

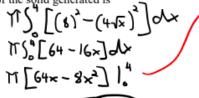
(E) e

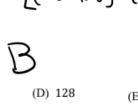
7. Setup integral(s) with respect to y that represent the area bounded by $y = \sin(x)$, y = 1, and x = 0. Do NOT evaluate. Sin //2)=x

8. Revolve the region bounded by the graphs of y = x - 2, x = 4, and y = -1 about the line x = 4. Set up the

integral for the volume of this solid, but do NOT evaluate.




9. Revolve the region bounded by the graphs of $y = -x^2$ and y = -1 about the line y = -1. Set up the integral for the volume of this solid, but do NOT evaluate.

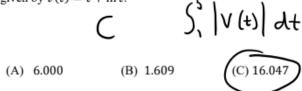

$$\frac{\text{Interest and solid, out do NOT evaluate.}}{\text{IT } \sum_{i=1}^{n} \left[(-i) - (-x^2) \right]^2 dx}$$

$$\frac{\text{IT } \sum_{i=1}^{n} \left[(-x^2) + 1 \right]^2 dx}{\text{IT } \sum_{i=1}^{n} \left[(-x^2) + 1 \right]^2 dx}$$



13. The average value of the function $f(x) = (x - 1)^2$ on the interval from x = 1 to x = 5 is

(C) $\frac{128}{3}$



3. Find the distance traveled (to three decimal places) from t = 1 to t = 5 seconds, for a particle whose velocity is given by $v(t) = t + \ln t$.

(D) 0.800

(E) 148.413

11. Which of the following integrals gives the length of the curve $y = \sin x^2$ from x = 0 to $x = \frac{\pi}{5}$?

A.
$$\int_{0}^{\frac{\pi}{5}} \sqrt{1 + 2x \sin x^2} \, dx$$

B.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + \sin^2(x^2)} dx$$

C.
$$\int_{0}^{\frac{\pi}{5}} \sqrt{1 + 2x \cos x^2} \, dx$$

C.
$$\int_0^{\frac{\pi}{5}} \sqrt{1 + 2x \cos x^2} dx$$

D. $\int_0^{\frac{\pi}{5}} \sqrt{1 + 2x \cos^2(x^2)} dx$

$$E. \int_{0}^{\frac{\pi}{5}} \sqrt{1 + 4x^2 \cos^2(x^2)} \, dx$$

5. The table below gives the values of f', the derivative of f. If f(4.2) = 3, what is the approximation of f(4.4)obtained by using Euler's method with 2 steps of equal size?

x	4.1	4.2	4.3	4.4
f'(x)	-0.2	-0.27	-0.32	-0.41

AP Calc. - AB/BC Semester 2 Review