Answer Key

5 for 5 Derivatives

x	O	2	7	9
g(x)	-3	-4	-1	-2
g'(x)	4	-2	-8	5

1. Selected values of a twice differentiable function, g(x), and its derivative are shown above. Consider the differentiable function h, defined by $h(x) = \sec x \ g(x)$. Find h'(0).

Sec
$$(0)$$
 tank $(9(0))$ + Sec (0) (0))

Sec (0) tank $(9(0))$ + Sec (0) (4)

-3 · $\frac{1}{\cos(0)}$ · $\frac{\sin(0)}{\cos(0)}$ + 4 · $\frac{1}{\cos(0)}$

-3 · $\frac{1}{\cos(0)}$ · $\frac{1}{\cos(0)}$ · $\frac{1}{\cos(0)}$ · $\frac{1}{\cos(0)}$

2. What is the slope of the line tangent to $y = 3 \ln x - \frac{5}{x}$ at x = 2?

$$\frac{dy}{dx} = 3\frac{1}{x} - 5(-1x^{-3})$$

$$\frac{dy}{dx} = \frac{3}{x} + \frac{5}{4}$$

$$\frac{3}{x} + \frac{5}{4}$$

3. Which of the following statements is true for the function f(x) defined below?

$$f(x) = \begin{cases} 5x^2 - 8x & for \ x \le 1\\ \ln x - 3 & for \ x > 1 \end{cases}$$

A.
$$\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

- B. There is a removable discontinuity at x = 1.
- C. f(x) is continuous and differentiable at x = 1.
- D. f(x) is continuous but not differentiable at x = 1.

4. The graph of f(x) is shown for $0 \le x \le 4$. Put the following in order from least to greatest.

 $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$

II. Average rate of change of f on [2,4]

D. IV, II, I, III s lope 7

III. $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$ IV. $\frac{f(3) - f(2)}{3 - 2}$

IV.
$$\frac{f(3)-f(2)}{3-2}$$

5. Line L is tangent to $y = 5x^2 + 8x$ and parallel to 12x + y = 4. What is the y-intercept of line

 $\frac{8-4}{4-2} = \frac{4}{2} = 2$

L?

dy = 10x + 8

Y=-12x+4

$$M = -12$$

$$Y - Y = -12(X+2)$$

y = -12x - 20

y=5(-2) +8(-2) 20-16