Semester 1 - Unit 3 Review

AP Calc. AB/BC

Find the equation of any *vertical* tangent lines for the graph of $3y - y^3 = 5x - 2$

Let f and g be differentiable functions where $g(x) = f^{-1}(x)$ for all x. Let f(-4) = -2, f(-1) = -4, f'(-4) = 5, and f'(-1) = 3. What is the value of g'(-4)?

x	g(x)	g'(x)	h(x)	h'(x)
-1	1	-2	5	-2
1	4	2	-1	3
4	5	-3	1	2
5	-1	3	4	-3

Find $\frac{d}{dx}g^{-1}(4)$.

Find
$$\frac{dy}{dx}$$
.

$$y = \tan^{-1}(3x)$$

$$y = \ln(x^3 - 2)$$

Find the slope of the tangent line at the given point.

$$y = \arctan\left(\frac{x}{2}\right)$$
 at $x = 2\sqrt{3}$.

$$4 = 5x + y^2$$
 at $(-1, 3)$

Evaluate $\frac{d^2y}{dx^2}$ at the given point.

$$y = e^{3x}$$
 at $x = \frac{1}{3}$.

Let f be a function with
$$f(1) = -2$$
. The derivative of f is given by $f'(x) = \cos\left(\frac{\pi x}{2}\right) + x^2 - 5$.

Find f''(3).

Write an equation for the line tangent to the graph of $y = \frac{1}{f(x)}$ at x = 1.

Let g be the function defined by $g(x) = f(\sqrt{17 - 2x^2})$. Find g'(2).

Let h be the inverse function of f. Find h'(-2).

. The graph of the function f is shown in the figure above. Which of the following statements about f is true?

(A)
$$f(a)$$
 exists

(B)
$$\lim_{x \to a} f(x) = 2$$

(C)
$$\lim_{x\to b}f(x)=1$$

D)
$$\lim_{x \to b^-} f(x) = \lim_{x \to b^+} f(x)$$
 (E) f is continuous at $x = 0$

Answer Key:

Semester 1 - Unit 3 Review - Answer Key