Unit 7 - End of Unit FRQ Review

Calc. BC

Warmup: Questions from Lesson 7.9?

If you haven't finished the CA worksheet from yesterday take it out and continue to work on it during this time.

Liquid fertilizer is injected into a hydroponics growing system via a pumping system. The total amount of liquid fertilizer injected into the growing system by time t is modeled by the function F that satisfies the logistic differential equation $\frac{dF}{dt}=\frac{1}{3}F\left(6-F\right)$, where t is measured in months and F is measured in liters. At time t=0, 3 liters of liquid fertilizer are injected into the growing system. (Note: Hydroponics is the process of growing plants in sand, gravel, or liquid, with added nutrients but without soil.)

- (a)
- (i) Find $\underset{t\rightarrow\infty}{\lim}F\left(t\right) .$
- (ii) Find $\lim_{t \to \infty} \frac{dF}{dt}$.

(b) Find the value of $\frac{dF}{dt}$ at the time when F is increasing most rapidly. Give a reason for your answer, and indicate units of measure.

(c)	Find	$\frac{d^2F}{dt^2}$	in terr	ns of	F.

(d)

- (i) Use Euler's method, starting at t=0 with two steps of equal size, to approximate the total amount of liquid fertilizer injected into the growing system by time t=1 month. Show the computations that lead to your answer.
- (ii) Is the approximation an overestimate or an underestimate for the total amount of liquid fertilizer injected into the growing system by time t=1 month? Give a reason for your answer.

Notes Filled In:

AP Calc. AB/BC - Unit 7 FRQ Review - Filled In