5 for 5 Derivatives

x	0	2	7	9
g(x)	-3	-4	-1	-2
g'(x)	4	-2	-8	5

- 1. Selected values of a twice differentiable function, g(x), and its derivative are shown above. Consider the differentiable function h, defined by $h(x) = \sec x \ g(x)$. Find h'(0).
 - A. 0
 - B. 1
 - C. 4
 - D. undefined
- 2. What is the slope of the line tangent to $y = 3 \ln x \frac{5}{x}$ at x = 2?
 - A. 11/4
 - B. 2
 - C. 1/4
 - D. $3 \ln 2 5/4$
- 3. Which of the following statements is true for the function f(x) defined below?

$$f(x) = \begin{cases} 5x^2 - 8x & for \ x \le 1\\ \ln x - 3 & for \ x > 1 \end{cases}$$

- A. $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$
- B. There is a removable discontinuity at x = 1.
- C. f(x) is continuous and differentiable at x = 1.
- D. f(x) is continuous but not differentiable at x = 1.

4. The graph of f(x) is shown for $0 \le x \le 4$. Put the following in order from least to greatest.

- 1. $\lim_{h \to 0} \frac{f(2+h)-f(2)}{h}$ II. Average rate of change of f on [2,4]
- III. $\lim_{x \to 3} \frac{f(x) f(3)}{x 3}$ IV. $\frac{f(3) f(2)}{3 2}$

- I, II, III, IV A.
- В. I, IV, III, II
- C. IV, I, III, II
- D. IV, II, I, III
- 5. Line L is tangent to $y = 5x^2 + 8x$ and parallel to 12x + y = 4. What is the y-intercept of line L?
 - A. 4
 - B. 8
 - C. -20
 - D. 28