Write your questions and thoughts here!

What is a one-sided limit?

A *one-sided limit* is the _____ a function approaches as you approach a given ____ from either the ____ or ___ side.

The limit of f as x approaches 3 from the left side is -1.

$$\lim_{x\to} f(x) =$$

The limit of f as x approaches 3 from the right side is 2.

$$\lim_{x\to} f(x) =$$

If the two sides are different?

$$\lim_{x\to} f(x) =$$

Example 2

Example 3

Sketch a graph of a function g that satisfies all of the following conditions.

a.
$$g(3) = -1$$

b.
$$\lim_{x \to 3} g(x) = 4$$

c.
$$\lim_{x \to -2^+} g(x) = 1$$

d.
$$g$$
 is increasing on $-2 < x < 3$

e.
$$\lim_{x \to -2^{-}} g(x) > \lim_{x \to -2^{+}} g(x)$$

1.3 Finding Limits from Graphs

For 1-3, give the value of each statement. If the value does not exist, write "does not exist" or "undefined."

1.

a.
$$\lim_{x \to -1^{-}} f(x) =$$
 b. $f(1) =$ c. $\lim_{x \to 0} f(x) =$

b.
$$f(1) =$$

c.
$$\lim_{x\to 0} f(x) =$$

d.
$$\lim_{x \to 2^+} f(x) =$$
 e. $f(-1) =$ f. $f(2) =$

e.
$$f(-1) =$$

f.
$$f(2) =$$

g.
$$\lim_{x \to -1^+} f(x) =$$
 h. $\lim_{x \to 1^-} f(x) =$ i. $\lim_{x \to 2} f(x) =$

h.
$$\lim_{x \to 1^{-}} f(x) =$$

i.
$$\lim_{x \to 2} f(x) =$$

2.

a.
$$\lim_{x \to -3} f(x) =$$
 b. $f(1) =$ c. $\lim_{x \to 1} f(x) =$

b.
$$f(1) =$$

c.
$$\lim_{x \to 1} f(x) =$$

d.
$$\lim_{x \to -2^+} f(x) =$$
 e. $f(3) =$ f. $\lim_{x \to -2^-} f(x) =$

$$e. f(3) =$$

f.
$$\lim_{x \to -2^{-}} f(x) =$$

g.
$$\lim_{x \to -2} f(x) =$$
 h. $f(-2) =$ i. $f(4) =$

h.
$$f(-2) =$$

i.
$$f(4) =$$

a.
$$\lim_{x \to 3^+} f(x) =$$
 b. $f(3) =$ c. $\lim_{x \to 0} f(x) =$

b.
$$f(3) =$$

c.
$$\lim_{x \to 0} f(x) =$$

d.
$$\lim_{x \to 2} f(x) =$$

$$e. f(0) =$$

d.
$$\lim_{x \to 3} f(x) =$$
 e. $f(0) =$ f. $\lim_{x \to 3^{-}} f(x) =$

g.
$$\lim_{x \to 0^+} f(x) = h. f(1) =$$

h.
$$f(1) =$$

4. Sketch a graph of a function f that satisfies all of the following conditions.

a.
$$f(-2) = 5$$

b.
$$\lim_{x \to -2} f(x) = 1$$

c.
$$\lim_{x \to 4^+} f(x) = 3$$

e.
$$\lim_{x \to 4^{-}} f(x) < \lim_{x \to 4^{+}} f(x)$$

5. Sketch a graph of a function g that satisfies all of the following conditions.

a.
$$g(1) = 3$$

b.
$$\lim_{x \to 1} g(x) = -2$$

c.
$$\lim_{x \to -3^+} g(x) = 5$$

d.
$$g$$
 is increasing only on $-5 < x < -3$ and $x > 1$

e.
$$\lim_{x \to -3^{-}} g(x) > \lim_{x \to -3^{+}} g(x)$$

1.3 Finding Limits from Graphs

6. The graph of the function f is shown. Which of the following statements about f is true?

- (A) $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$
- (B) $\lim_{x \to a} f(x) = 4$
- (C) $\lim_{x \to b} f(x) = 4$
- (D) $\lim_{x \to b} f(x) = 5$

 $\lim_{x \to a} f(x)$ does not exist. (E)

7. The figure below shows the graph of a function f with domain $0 \le x < 6$. Which of the following statements are true?

II.
$$\lim_{x \to 4^+} f(x)$$
 exists.

III.
$$\lim_{x \to 4}^{x \to 4} f(x)$$
 exists.

- (B) II only
- (C) I and II only
- (D) I and III only (E) I, II, and III

8. The graph of a function f is shown below. For which of the following values of c does $\lim_{x \to c} f(x) = 2$?

(A) 0 only

(B) 0 and 4 only

(C) -3 and 0 only

- (D) -3 and 4 only
- (E) -3, 0, and 4