Chapter 5 Polynomials and Polynomial Functions

End Behavior of a Polynomial Function

The end behavior of a polynomial function of degree n with leading term ax^n :

n	end behavior
even	up and up
odd	down and up
even	down and down
odd	up and down
	even odd even

A **polynomial function** is classified by degree. Its degree is the highest degree among its monomial term(s). The degree determines the possible number of **turning points** in the graph and the **end behavior** of the graph.

A turning point is a **relative maximum** or **relative minimum** of a polynomial function.

Factor Theorem

The expression x - a is a linear factor of a polynomial if and only if the value a is a zero of the related polynomial function.

You can divide a polynomial by one of its factors to find another factor. When you divide by a linear factor, you can simplify this division by writing only the coefficients of each term. This is called **synthetic division**. The **Remainder Theorem** says that P(a) is the remainder when you divide P(x) by x - a.

Factoring a Sum or Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

All content from Algebra 2, 2011, Prentice Hall, Pearson.

Remainder Theorem

If you divide a polynomial P(x) of degree $n \ge 1$ by x - a, then the remainder is P(a).

Rational Root Theorem

Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients. Integer roots of P(x) = 0 must be factors of a_0 . Rational roots have reduced form $\frac{p}{q}$ where p is an integer factor of a_0 .

Conjugate Root Theorems

Suppose P(x) is a polynomial with *rational* coefficients. If $a + \sqrt{b}$ is an irrational root with a and b rational, then $a - \sqrt{b}$ is also a root.

Suppose P(x) is a polynomial with *real* coefficients. If a + bi is a complex root with a and b real, then a - bi is also a root.

Fundamental Theorem of Algebra

If P(x) is a polynomial of degree $n \ge 1$, then P(x) = 0 has exactly n roots, including multiple and complex roots.

Binomial Theorem

For every positive integer n, $(a + b)^n = P_0 a^n + P_1 a^{n-1} b + P_2 a^{n-2} b^2 + \cdots + P_{n-1} a b^{n-1} + P_n b^n$ where P_0, P_1, \ldots, P_n are the numbers in the nth row of Pascal's Triangle.