Chapter 7 Exponential and Logarithmic **Functions**

Exponential Functions

Parent,
$$b > 0$$
, $b \ne 1$ $y = b^{x}$
Reflection across x-axis $y = -b^{x}$
Stretch $(a > 1)$ $y = ab^{x}$

Shrink
$$(0 < a < 1)$$

Translation

$$y = b^{x-h} + k$$

The function

$$y = ab^x$$
, $a > 0$, $b > 1$, $y = ab^x$ models exponential growth. $y = ab^x$ models exponential growth.

 $y = ab^{x}$, a > 0, b > 1, $y = ab^{x}$ models exponential

Rate of growth (r > 0) or decay (r < 0)

$$A(t) = a(1+r)$$

Continuously Compounded Interest

 $A(t) = P \cdot e^{rt}$, where A(t) represents the total, P represents the principal, r represents the interest rate, and t represents time in years.

Logarithms are exponents. In fact, $\log_b a = c$ if and only if $b^{c} = a$.

The exponential function $y = b^{x}$ and the logarithmic function $y = \log_b x$ are inverse functions.

Logarithmic Functions

Base b Base e Parents, b > 0, $b \ne 1$ $y = \log_b x$ $y = \ln x$ Reflection across x-axis $y = -\log_b x$ $y = -\ln x$ Stretch (a > 1) $y = a \log_b x$ $y = a \ln x$ Shrink (0 < a < 1) Translation horizontal by h vertical by h $y = \log_b (x - h) + k$ $y = \ln (x - h) + k$

Properties of Logarithms

For any positive numbers m, n, and b where $b \neq 1$ Product Property: $\log_b mn = \log_b m + \log_b n$

Quotient Property: $\log_b \frac{m}{n} = \log_b m - \log_b n$

Power Property: $\log_b m^n = n \log_b m$

Change of Base Formula

For any positive numbers, m, b, and c, with $b \neq 1$ and $c \neq 1$, $\log_b m = \frac{\log_c m}{\log_c b}$.

When b = 10, the logarithm is called a **common logarithm**, which you can write as $\log x$.

The inverse of $y = e^x$ is the **natural logarithmic function** $y = \log_e x = \ln x$. You solve natural logarithmic equations in the same way as common logarithmic equations.

An equation in the form $b^{cx} = a$, where the exponent includes a variable, is called an **exponential equation**. You can solve exponential equations by taking the logarithm of each side of the equation. An equation that includes one or more logarithms involving a variable is called a **logarithmic equation**.