Reteaching

The Reciprocal Function Family

A Reciprocal Function in **General Form**

The general form is $y = \frac{a}{x-h} + k$, where $a \neq 0$ and $x \neq h$.

The graph of this equation has a horizontal asymptote at y = k and a vertical asymptote at x = h.

Two Members of the **Reciprocal Function Family**

When $a \neq 1$, h = 0, and k = 0, you get the inverse variation function, $y = \frac{a}{x}$.

When a = 1, h = 0, and k = 0, you get the parent reciprocal function, $y = \frac{1}{x}$.

Problem

What is the graph of the inverse variation function $y = \frac{-5}{x}$?

Step 1 Rewrite in general form and identify *a*, *h*, and *k*.

$$y = \frac{-5}{x - 0} + 0$$

$$y = \frac{-5}{x-0} + 0$$
 $a = -5, h = 0, k = 0$

Step 2 Identify and graph the horizontal horizontal asymptote: y = kand vertical asymptotes.

vertical asymptote: x = h

Step 3 Make a table of values for $y = \frac{-5}{x}$. Plot the points and then connect the points in each quadrant to make a curve.

X	-5	-2.5	-1	1	2.5	5
У	1	2	5	-5	-2	-1
$\overline{}$						$\overline{}$

Exercises

Graph each function. Include the asymptotes.

1.
$$y = \frac{9}{x}$$

2.
$$y = -\frac{4}{x}$$

3.
$$xy = 2$$

Reteaching (continued)

The Reciprocal Function Family

A reciprocal function in the form $y = \frac{a}{x-h} + k$ is a *translation* of the inverse variation function $y = \frac{a}{x}$. The translation is h units horizontally and k units vertically. The translated graph has asymptotes at x = h and y = k.

Problem

What is the graph of the reciprocal function $y = -\frac{6}{x+3} + 2$?

Step 1 Rewrite in general form and identify *a*, *h*, and *k*.

$$y = \frac{-6}{x - (-3)} + 2$$

$$y = \frac{-6}{x - (-3)} + 2$$
 $a = -6, h = -3, k = 2$

horizontal asymptote: y = k

vertical asymptote: x = h

x = -3

Step 3 Make a table of values for
$$y = \frac{-6}{x}$$
, then *translate* each (x, y) pair to $(x + h, y + k)$. Plot the translated points and connect the points in each quadrant to make a curve.

(x	-6	-3	-2	2	3	6
У	1	2	3	-3	-2	-1
(x + (-3))	-9	-6	-5	-1	0	3
y+2	3	4	5	-1	0	1

Exercises

Graph each function. Include the asymptotes.

4.
$$y = \frac{3}{x-2} - 4$$

5.
$$y = -\frac{4}{x-8}$$

6.
$$y = \frac{2}{3x} + \frac{3}{2}$$

