Reteaching

Rational Functions and Their Graphs

A rational function may have one or more types of discontinuities: holes (removable points of discontinuity), vertical asymptotes (non-removable points of discontinuity), or a horizontal asymptote.

If	Then	Example
a is a zero with multiplicity m in the numerator and multiplicity n in the denominator, and $m \ge n$	hole at $x = a$	$f(x) = \frac{(x-5)(x+6)}{(x-5)}$ hole at $x = 5$
a is a zero of the denominator only, or a is a zero with multiplicity m in the numerator and multiplicity n in the denominator, and $m < n$	vertical asymptote at $x = a$	$f(x) = \frac{x^2}{x - 3}$ vertical asymptote at $x = 3$

Let p =degree of numerator.

Let q =degree of denominator.

• m < n	horizontal asymptote at $y = 0$	$f(x) = \frac{4x^2}{7x^2 + 2}$
• $m > n$	no horizontal asymptote exists	
• $m = n$	horizontal asymptote at $y = \frac{a}{b}$, where a and b are coefficients of highest degree terms in numerator and denominator	horizontal asymptote at $y = \frac{4}{7}$

Problem

What are the points of discontinuity of $y = \frac{x^2 + x - 6}{3x^2 - 12}$, if any?

- Factor the numerator and denominator completely. $y = \frac{(x-2)(x+3)}{3(x-2)(x+2)}$ Step 1
- Look for values that are zeros of both the numerator and the denominator. Step 2 The function has a hole at x = 2.
- Step 3 Look for values that are zeros of the denominator only. The function has a vertical asymptote at x = -2.
- Step 4 Compare the degrees of the numerator and denominator. They have the same degree. The function has a horizontal asymptote at $y = \frac{1}{3}$.

Exercises

Find the vertical asymptotes, holes, and horizontal asymptote for the graph of ch rational function. vertical asymptotes: x = 3, x = -3; i. $y = \frac{x}{x^2 - 9}$
hole: x = 1
vertical asymptote: $x = -\frac{2}{3}$; 2. $y = \frac{6x^2 - 6}{x - 1}$
3. $y = \frac{4x + 5}{3x + 2}$ each rational function.

vertical asymptotes:
$$x = 3$$
, $x = -3$

hole:
$$x = 1$$

2. $y = \frac{6x^2 - 6}{3}$

vertical asymptote:
$$x = -\frac{4x + 5}{3x + 2}$$

horizontal asymptote: Prentice Hall Algebra 2 • Teaching Resources horizontal asymptote: $y = \frac{4}{3}$ Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Reteaching (continued)

Rational Functions and Their Graphs

Before you try to sketch the graph of a rational function, get an idea of its general shape by identifying the graph's holes, asymptotes, and intercepts.

Problem

What is the graph of the rational function $y = \frac{x+3}{x+1}$?

- **Step 1** Identify any holes or asymptotes. no holes; vertical asymptote at x=-1; horizontal asymptote at $y=\frac{1}{1}=1$
- **Step 2** Identify any x- and y-intercepts. *x*-intercepts occur when y = 0. *y*-intercepts occur when x = 0.

$$\frac{x+3}{x+1} = 0$$

$$y = \frac{0+3}{0+1}$$
$$y = 3$$

$$x+3=0$$

$$y = 3$$

$$x = -3$$

x-intercept at -3

y-intercept at 3

Х

-2 -1.5

> 1 3

у -1

-3 2

1.5

Step 3 Sketch the asymptotes and intercepts.

Step 4 Make a table of values, plot the points, and sketch the graph.

Exercises

Graph each function. Include the asymptotes.

4.
$$y = \frac{4}{x^2 - 9}$$

5. $y = \frac{x^2 + 2x - 2}{x - 1}$

