11-9 Reteaching Binomial Distributions

Suppose you repeat an experiment n times, and each time you run the experiment it has a probability of success p and a probability of failure q. Then, the probability of x successes in n trials is:

$$_{n}$$
C $_{x}p^{x}q^{n-x}$, where $q=1-p$

Problem

What is the probability of two successes in five trials, where the probability of success for each trial is 0.2?

$$_{n}$$
C $_{x} = {}_{5}$ C $_{2}$ Find $_{n}$ C $_{x}$

$$= \frac{5!}{2!(5-2)!}$$

$$= 10$$
 $q = 1 - p$ Find q .
$$= 1 - .2$$

$$= 0.8$$
 $P(2 \text{ successes}) = {}_{5}$ C $_{2}(0.2)^{2}(0.8)^{5-2}$ Substitute for n , x , p , and q in the formula.
$$= 10(0.2)^{2}(0.8)^{3}$$
 Simplify.

The probability of two successes in five trials is about 20%.

= 10(0.04)(0.512)

= 0.2048

Exercises

Find the probability of x successes in n trials for the given probability of success p on each trial. Round to the nearest tenth of a percent.

1.
$$x = 3$$
, $n = 4$, $p = 0.3$ **7.6%**

2.
$$x = 4$$
, $n = 6$, $p = 0.1$ **0.1%**

3.
$$x = 7$$
, $n = 9$, $p = 0.4$ 2.1%

4.
$$x = 5$$
, $n = 6$, $p = 0.3$ **1.0%**

- **5.** A light fixture contains six light bulbs. With normal use, each bulb has a 95% chance of lasting for 2 yr. What is the probability that all six bulbs last for 2 yr? about 73.5%
- **6.** Use the information from Exercise 5. What is the probability that five of the six bulbs will last for 2 yr? about 23.2%
- 7. Suppose the bulbs have an 80% chance of lasting for 2 yr. Find the probability that three of the six bulbs will last for 2 yr. 8.2%

11-9

Reteaching (continued)

Binomial Distributions

Suppose you repeat an experiment n times, and each time you run the experiment it has a probability of success p and a probability of failure q. You can expand the binomial $(p + q)^n$ to find the distribution of binomial probabilities.

- The first term of the expansion is the probability of *n* successes out of *n* trials.
- The second term of the expansion is the probability of n-1 successes out of n trials.
- The third term of the expansion is the probability of n-2 successes out of n trials.
- The pattern continues to the last term, the probability of zero successes out of *n* trials.

Problem

Find the distribution of binomial probabilities for four trials with a probability of success of 0.3 for each trial. What is the probability of at least three successes?

Step 1 Use the Binomial Theorem to expand $(p + q)^n$.

$${}_{4}C_{4}(0.3)^{4}(0.7)^{4-4} + {}_{4}C_{3}(0.3)^{3}(0.7)^{4-3} + {}_{4}C_{2}(0.3)^{2}(0.7)^{4-2}$$

+ ${}_{4}C_{1}(0.3)^{1}(0.7)^{4-1} + {}_{4}C_{0}(0.3)^{0}(0.7)^{4-0}$

Step 2 Simplify.

$$= (0.3)^4 + 4(0.3)^3(0.7)^1 + 6(0.3)^2(0.7)^2 + 4(0.3)^1(0.7)^3 + (0.7)^4$$

= 0.0081 + 0.0756 + 0.2646 + 0.4116 + 0.2401

Step 3 Determine the distribution of binomial probabilities.

$$P(4 \text{ successes}) = 0.0081$$
 $P(3 \text{ successes}) = 0.0756$ $P(2 \text{ successes}) = 0.2646$ $P(1 \text{ success}) = 0.4116$ $P(0 \text{ successes}) = 0.2401$

Step 4 Find the probability of at least 3 successes.

$$P(\text{at least 3 successes}) = P(4 \text{ successes}) + P(3 \text{ successes})$$

= 0.0081 + 0.0756 = 0.0837

The probability of at least three successes in four trials is 8.37%.

Exercises

- **8.** In a population of laboratory mice, the probability that a mouse has black spots is 0.85. What is the probability of randomly choosing 7 mice and getting at least 5 mice with black spots? **about 92.6%**
- **9.** A construction site has a 97% rate of accident-free workdays. What is the probability of no more than 1 accident in the next 5 days? **about 99.2%**