13-1 Reteaching

Exploring Periodic Data

The graph of a periodic function shows a repeating pattern of y-values. One complete pattern is a cycle. The horizontal distance from one point on the graph to the point where the pattern begins repeating is called the *period* of the function.

Problem

Is the function periodic? If it is, what is the period?

The repeating pattern of *y*-values shows that this function is periodic.

Name one cycle:

- Draw a vertical line through a point where the graph reaches its minimum *y*-value.
- Trace the graph with your finger until you feel the pattern repeat.
- Draw a second vertical line through the point where the pattern starts to repeat. The vertical lines mark the beginning and end of one cycle.

Find the period of the function:

- Find the points where the vertical lines intersect the graph: (5, -4) and (10, -4).
- Subtract the *x*-values to find the horizontal length of one cycle: 10 5 = 5.

The period of the function is 5.

Exercises

Determine whether each function *is* or *is not* periodic. If it is, find the period.

periodic; 6

not periodic

periodic; 3

13-1 Reteaching (continued) Exploring Periodic Data

You can measure the amount of variation in the y-values of a periodic function. The amplitude of a periodic function is the difference between the maximum and minimum values, divided by 2: $A = \frac{1}{2}$ (maximum value – minimum value).

Problem

What is the amplitude of the periodic function?

Name the maximum and minimum *y*-values:

- Draw one horizontal line across the highest points on the graph.
- Draw a second horizontal line across the lowest points on the graph.

Find the amplitude of the function:

- Find a point where the first horizontal line intersects the graph: (7.5, 4). The y-value, 4, is the maximum value.
- Find a point where the second horizontal line intersects the graph: (10, -4). The *y*-value, -4, is the minimum value.
- Use the amplitude formula: $A = \frac{1}{2}$ (maximum value minimum value)

$$A = \frac{1}{2}(4 - (-4)) = \frac{1}{2}(8) = 4$$

The amplitude of the function is 4.

Exercises

Determine whether each function is or is not periodic. If it is, find the amplitude.

not periodic

periodic; 2

periodic; 2