Reteaching

- A central angle that measures π radians intercepts an arc that forms a semicircle. It is a 180° rotation from the initial side to the terminal side of the angle.
- When converting radians to degrees or degrees to radians, use the proportion <u>degree measure</u> <u>radian measure</u>

Problem

What is the radian measure of an angle of 225°?

$$\frac{225}{360} = \frac{x}{2\pi}$$
 Substitute 225 for degree measure and a variable for radian measure.

$$360x = 450\pi$$
 Cross multiply.

$$x = \frac{450\pi}{360}$$
 Divide both sides by 360.

$$x = \frac{5\pi}{4}$$
 Simplify.

$$x \approx 3.93$$
 Use a calculator.

Check

$$\frac{\theta}{360} = \frac{\frac{5}{4}\pi}{2\pi}$$
 Check by substituting the radians into the proportion and solving for degrees.

$$\frac{\theta}{360} = \frac{\frac{5}{4}\pi}{2\pi}$$
 Cancel π since it is in the numerator and denominator.

$$2\theta = 450$$
 Cross multiply.

$$heta=225$$
 Divide both sides by 2. This gives the degree measure.

An angle of 225° measures about 3.93 radians.

Exercises

Write each measure in radians and check.

1.
$$20^{\circ} \frac{\pi}{9} \approx 0.35$$

2.
$$150^{\circ} \frac{5\pi}{6} \approx 2.62$$
 3. $45^{\circ} \frac{\pi}{4} \approx 0.79$

3.
$$45^{\circ} \frac{\pi}{4} \approx 0.79$$

4.
$$-110^{\circ}$$
 $-\frac{11\pi}{18} \approx -1.92$ **5.** 315° $\frac{7\pi}{4} \approx 5.50$

5.
$$315^{\circ} \frac{7\pi}{4} \approx 5.50$$

6.
$$320^{\circ} \frac{16\pi}{9} \approx 5.59$$

Write each measure in degrees and check.

7.
$$-\frac{3\pi}{2}$$
 -270°

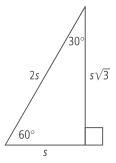
8.
$$\frac{5\pi}{3}$$
 300°

9.
$$\frac{\pi}{12}$$
 15°

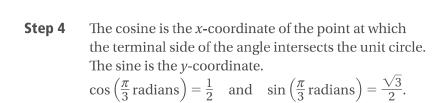
10.
$$\frac{8\pi}{5}$$
 288°

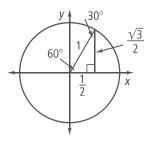
11.
$$-\frac{7\pi}{6}$$
 -210°

12.
$$\frac{9\pi}{2}$$
 810°


Reteaching (continued)

You can use Special Right Triangles to find the exact values for the cosine and sine of radian measures.


Problem


What are the exact values of $\cos\left(\frac{\pi}{3} \text{ radians}\right)$ and $\sin\left(\frac{\pi}{3} \text{ radians}\right)$?

- Find the angle measure in degrees. $\frac{\pi}{3} = \frac{180^{\circ}}{3} = 60^{\circ}$ Step 1
- Step 2 Recall the 30°-60°-90° triangle from Geometry. In the unit circle, the hypotenuse is 1. So, 2s = 1, or $s = \frac{1}{2}$. Therefore the side opposite the 30° angle is $\frac{1}{2}$ and the side opposite the 60° angle is $\frac{\sqrt{3}}{2}$.

Draw the angle on the unit circle. Complete a 30°-60°-90° Step 3 triangle. Label the sides of the triangle.

Exercises

The measure θ of an angle in standard position is given. Find the exact values of $\cos \theta$ and $\sin \theta$ for each angle measure.

13. $-\frac{\pi}{6}$ radians

$$\frac{\sqrt{3}}{2}, -\frac{1}{2}$$

14. $\frac{3\pi}{4}$ radians

$$-\frac{\sqrt{2}}{2}$$
, $\frac{\sqrt{2}}{2}$

15. $-\frac{\pi}{3}$ radians

$$\frac{1}{2}$$
, $-\frac{\sqrt{3}}{2}$

- **16.** $-\frac{2\pi}{3}$ radians $-\frac{1}{2}, -\frac{\sqrt{3}}{2}$
- 17. $\frac{5\pi}{6}$ radians $-\frac{\sqrt{3}}{2}, \frac{1}{2}$
- **18.** $\frac{7\pi}{4}$ radians $\frac{\sqrt{2}}{2}$, $-\frac{\sqrt{2}}{2}$