Reteaching Reciprocal Trigonometric Functions

You have already worked with sine, cosine, and tangent functions. The reciprocals of these functions are also trigonometric functions:

CosecantSecantCotangent
$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$ $\sin \theta = \frac{1}{\csc \theta}$ $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

Problem

What is the exact value of $\sec\left(-\frac{\pi}{3}\right)$? Do not use a calculator.

Step 1 Find the reciprocal of
$$\sec\left(-\frac{\pi}{3}\right)$$
. $\frac{1}{\sec\left(-\frac{\pi}{3}\right)} = \cos\left(-\frac{\pi}{3}\right)$

Step 2 Draw the unit circle. Draw the terminal side of the angle $-\frac{\pi}{3}$

- **Step 3** Label the coordinates of the point where the unit circle intersects the terminal side of the angle $-\frac{\pi}{3}$.
- **Step 4** Find the exact value of $\cos\left(-\frac{\pi}{3}\right)$. $\cos\left(-\frac{\pi}{3}\right) = x$ -coordinate of point $P = \frac{1}{2}$.
- $\sec\left(-\frac{\pi}{3}\right) = \frac{1}{\cos\left(-\frac{\pi}{3}\right)} = \frac{1}{\frac{1}{2}} = 2$ **Step 5** Use the definition of secant.

Exercises

Find the exact value of each expression. Do not use a calculator.

1.
$$\cot \frac{\pi}{6} \sqrt{3}$$

1.
$$\cot \frac{\pi}{6} \sqrt{3}$$
 2. $\sec \left(-\frac{3\pi}{4}\right) - \sqrt{2}$ **3.** $\csc \left(-\frac{\pi}{2}\right) - 1$ **4.** $\sec \frac{5\pi}{3}$ **2**

3.
$$\csc\left(-\frac{\pi}{2}\right)$$
 -1

4.
$$\sec \frac{5\pi}{3}$$
 2

5.
$$\csc \frac{\pi}{4} \sqrt{2}$$

6.
$$\cot \frac{2\pi}{3} - \frac{\sqrt{3}}{3}$$

7.
$$\sec{(3\pi)}$$
 –

5.
$$\csc \frac{\pi}{4} \sqrt{2}$$
 6. $\cot \frac{2\pi}{3} - \frac{\sqrt{3}}{3}$ **7.** $\sec (3\pi) - 1$ **8.** $\csc \left(-\frac{\pi}{6} \right) - 2$

Reteaching (continued)

Reciprocal Trigonometric Functions

The graphs of cosecant, secant, and cotangent functions are related to the graphs of sine, cosine, and tangent functions.

- The graph of a cosecant function has a vertical asymptote where the value of the related sine function is zero.
- The graph of a secant function has a vertical asymptote where the value of the related cosine function is zero.
- The graph of a cotangent function is a reflection across a vertical line of the related tangent function.

Problem

What are the graphs of $y = \cos x$ and $y = \sec x$ in the interval from 0 to 2π ?

Step 1 Make a table of values. Use the fact that $\sec \theta = \frac{1}{\cos \theta}$. The graph of $y = \sec x$ has asymptotes where $\cos x$ is equal to zero.

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$\cos \theta$	1	0.707	0	-0.707	-1	-0.707	0	0.707	1
$\frac{1}{\cos\theta}$	1/1	1 0.707	1 0	$\frac{1}{-0.707}$	<u>1</u> -1	$\frac{1}{-0.707}$	1 0	1 0.707	1 1
sec θ	1	1.414		-1.414	-1	-1.414		1.414	1

Step 2 Plot the points from the table. Connect the points with smooth curves.

Exercises

Sketch each graph in the interval from 0 to 2π .

9.
$$y = \cot 3\theta$$

10.
$$y = -\sec 2\theta$$

11.
$$y = -2 \csc \frac{1}{2}\theta$$

