13-7 Reteaching

Translating Sine and Cosine Functions

You can translate the graphs of sine and cosine functions both horizontally and vertically. A horizontal translation is called a *phase shift*. For a function in the form $y = a \sin b(x - h) + k \text{ or } y = a \cos b(x - h) + k$:

- |a| =amplitude
- $\frac{2\pi}{h}$ = period
- h = phase shiftIf h > 0, the graph moves to the right.

If h < 0, the graph moves to the left.

• k = vertical shiftIf k > 0, the graph moves up.

If k < 0, the graph moves down.

Problem

What are the amplitude, period, and any phase shift or vertical shift in the graph of the function $y = 2 \sin \frac{1}{3}(x + 5)$?

$$y = 2\sin\frac{1}{3}(x - (-5)) + 0$$
 Write function as $y = a\sin b(x - h) + k$.

$$a=2,\,b=rac{1}{3},\,h=-5,\,k=0$$
 Identify a, b, h, and k.

$$|a| = |2| = 2$$
 amplitude = 2

$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{3}} = 6\pi$$
 period = 6π

h = -5

The phase shift is 5 units to the left.

k = 0 There is no vertical shift.

Exercises

Determine the amplitude, period, and any phase shift or vertical shift in the graphs of the functions.

1.
$$y = 6\cos 3x + 2$$

2.
$$y = -\sin\frac{1}{2}(x - \pi)$$

1.
$$y = 6\cos 3x + 2$$
 2. $y = -\sin\frac{1}{2}(x - \pi)$ **3.** $y = 2\sin 8\left(x - \frac{\pi}{3}\right) - 5$

6;
$$\frac{2\pi}{3}$$
; 2 units up

1;
$$4\pi$$
; π units right 2; $\frac{\pi}{4}$; $\frac{\pi}{3}$ right; 5 units down

1.
$$y = \cos 2(x - 1)$$

$$\frac{2}{3}$$
; 2π ; 3π units left

4.
$$y = \cos 2(x - 1) + 3.4$$
 5. $y = \frac{2}{3}\sin(x + 3\pi) - \pi$ 6. $y = -3\cos\left(x + \frac{\pi}{4}\right) + 12$ 1; π ; 1 unit right; 3.4 units up $\frac{2}{3}$; 2π ; 3π units left; π units down 3; 2π ; $\frac{\pi}{4}$ units left; 12 units up

13-7 Reteaching (continued)

Translating Sine and Cosine Functions

The graph of a function in the form $y = a \sin b(x - h) + k$ is a translation of the graph of $y = a \sin bx$. The graph of a function in the form $y = a \cos b(x - h) + k$ is a translation of the graph of $y = a \cos bx$.

Problem

What is the graph of $y = 2 \sin 3\left(x - \frac{\pi}{3}\right) + 1$ in the interval from 0 to 2π ?

- **Step 1** Compare the function to $y = a \sin b(x h) + k$. a = 2 and b = 3 $|a| = |2| = 2; \frac{2\pi}{2}; h = \frac{\pi}{2}; k = 1$ Find the amplitude, period, h, and k.
- Step 2 Find the minimum and maximum of the curve before the vertical shift. Because the amplitude is 2, the maximum is 2 and the minimum is -2.
- Make a table of values. Choose *x*-values at Step 3 intervals of one-fourth the period: $\frac{\frac{2\pi}{3}}{4} = \frac{\pi}{6}$. The γ -values before the vertical shift cycle through the pattern zero-max-zero-min-zero. Add *h* to the *x*-values and add *k* to the *y*-values to find the translated points.

	X	0	<u>π</u>	<u>π</u> 3	<u>π</u> 2	$\left[\begin{array}{c c} 2\pi \\ \hline 3 \end{array}\right]$
	$x + \frac{\pi}{3}$	<u>π</u> 3	<u>π</u> 2	<u>2π</u> 3	<u>5π</u> 6	π
	У	0	2	0	-2	0
	y + 1	1	3	1	-1	1

- Step 4 Plot the translated points from the table.
- Step 5 Draw a smooth curve through the points. Extend the pattern from 0 to 2π .

Exercises

Sketch each graph in the interval from 0 to 2π .

7.
$$y = -2\sin\frac{1}{2}x - 1$$
 8. $y = \cos 3\left(x + \frac{\pi}{2}\right)$

8.
$$y = \cos 3(x + \frac{\pi}{2})$$

9.
$$y = -2\cos(x + \pi) - 2$$

