Reteaching

Roots and Radical Expressions

For any real numbers *a* and *b* and any positive integer *n*, if *a* raised to the *n*th power equals b, then a is an nth root of b. Use the radical sign to write a root. The following expressions are equivalent:

Problem

What are the real-number roots of each radical expression?

Because
$$(7)^3=343$$
, 7 is a third (cube) root of 343. Therefore, $\sqrt[3]{343}=7$. (Notice that $(-7)^3=-343$, so -7 is not a cube root of 343.)

$$\mathbf{b.} \quad \sqrt[4]{\frac{1}{625}} \qquad \qquad \text{Because } \left(\frac{1}{5}\right)^4 = \frac{1}{625} \text{ and } \left(-\frac{1}{5}\right)^4 = \frac{1}{625}, \text{ both } \frac{1}{5} \text{ and } -\frac{1}{5} \text{ are real-number fourth roots of } \frac{1}{625}.$$

c.
$$\sqrt[3]{-0.064}$$
 Because $(-0.4)^3 = -0.064, -0.4$ is a cube root of -0.064 and is, in fact, the only one. So, $\sqrt[3]{-0.064} = -0.4$.

d.
$$\sqrt{-25}$$
 Because $(5)^2 = (-5)^2 = 25$, neither 5 nor -5 are second (square) roots of -25 . There are no real-number square roots of -25 .

Exercises

Find the real-number roots of each radical expression.

1.
$$\sqrt{169}$$
 -13, 13

2.
$$\sqrt[3]{729}$$
 9

3.
$$\sqrt[4]{0.0016}$$
 -0.2, 0.2

4.
$$\sqrt[3]{-\frac{1}{8}}$$
 -\frac{1}{2}

5.
$$\sqrt{\frac{4}{121}}$$
 $-\frac{2}{11}$, $\frac{2}{11}$

6.
$$\sqrt[3]{\frac{125}{216}}$$
 $\frac{5}{6}$

7.
$$\sqrt{-\frac{4}{25}}$$
 no real sq root 8. $\sqrt[4]{0.1296}$ -0.6, 0.6 9. $\sqrt[3]{-0.343}$ -0.7

8.
$$\sqrt[4]{0.1296}$$
 -0.6, 0.6

9.
$$\sqrt[3]{-0.343}$$
 -0.7

10.
$$\sqrt[4]{-0.0001}$$
 no real 4th root

11.
$$\sqrt[5]{\frac{1}{243}}$$
 $\frac{1}{3}$

12.
$$\sqrt[3]{\frac{8}{125}}$$
 $\frac{2}{5}$

Reteaching (continued)

Roots and Radical Expressions

You cannot assume that $\sqrt[n]{a^n} = a$. For example, $\sqrt{(-6)^2} = \sqrt{36} = 6$, not -6. This leads to the following property for any real number *a*:

If
$$n$$
 is odd

$$\sqrt[n]{a^n} = a$$

If
$$n$$
 is even

If *n* is even
$$\sqrt[n]{a^n} = |a|$$

Problem

What is the simplified form of each radical expression?

a.
$$\sqrt[3]{1000x^3y^9}$$

$$\sqrt[3]{1000x^3y^9} = \sqrt[3]{10^3x^3(y^3)^3}$$

Write each factor as a cube.

$$=\sqrt[3]{(10xy^3)^3}$$

 $=\sqrt[3]{(10xy^3)^3}$ Write as the cube of a product.

$$= 10xv^{3}$$

Simplify.

b.
$$\sqrt[4]{\frac{256g^8}{h^4k^{16}}}$$

$$\sqrt[4]{\frac{256g^8}{h^4k^{16}}} = \sqrt[4]{\frac{4^4(g^2)^4}{h^4(k^4)^4}}$$
 Write each factor as a power of 4.

$$=\sqrt[4]{\left(\frac{4g^2}{hk^4}\right)^4}$$

 $=\sqrt[4]{\left(\frac{4g^2}{hk^4}\right)^4}$ Write as the fourth power of a quotient.

$$=\frac{4g^2}{\mid h \mid k^4} \qquad \qquad \text{Simplify.}$$

The absolute value symbols are needed to ensure the root is positive when h is negative. Note that $4g^2$ and k^4 are never negative.

Exercises

Simplify each radical expression. Use absolute value symbols when needed.

13.
$$\sqrt{36x^2}$$
 6 | x |

14.
$$\sqrt[3]{216y^3}$$
 6y

15.
$$\sqrt{\frac{1}{100x^2}}$$
 $\frac{1}{10|x|}$

16.
$$\frac{\sqrt{x^{20}}}{\sqrt{v^8}}$$
 $\frac{x^{10}}{v^4}$

16.
$$\frac{\sqrt{x^{20}}}{\sqrt{v^8}} \frac{x^{10}}{y^4}$$
 17. $\sqrt[3]{\frac{(x+3)^3}{(x-4)^6}} \frac{x+3}{(x-4)^2}$ **18.** $\sqrt[5]{x^{10}y^{15}z^5} x^2y^3z^{-3}$

18.
$$\sqrt[5]{x^{10}y^{15}z^5}$$
 x^2y^3z

19.
$$\sqrt[3]{\frac{27z^3}{(z+12)^6}}$$
 $\frac{3z}{(z+12)^2}$ **20.** $\sqrt[4]{2401x^{12}}$ **7** $|x^3|$ **21.** $\sqrt[3]{\frac{1331}{x^3}}$ $\frac{11}{x}$

20.
$$\sqrt[4]{2401x^{12}}$$
 7 | x^3

21.
$$\sqrt[3]{\frac{1331}{x^3}}$$
 $\frac{11}{x}$

22.
$$\sqrt[4]{\frac{(y-4)^8}{(z+9)^4}} \quad \frac{(y-4)^2}{|z+9|}$$
 23. $\sqrt[3]{\frac{a^6b^6}{c^3}} \quad \frac{a^2b^2}{c}$

23.
$$\sqrt[3]{\frac{a^6b^6}{c^3}}$$
 $\frac{a^2b^2}{c}$

24.
$$\sqrt[3]{-x^3y^6}$$
 -xy²