Reteaching

Rational Exponents

You can simplify a number with a rational exponent by converting the expression to a radical expression:

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$
, for $n > 0$ $y^{\frac{1}{2}} = \sqrt[2]{9} = 3$ $y^{\frac{1}{3}} = \sqrt[3]{8} = 2$

$$9^{\frac{1}{2}} = \sqrt[2]{9} = 3$$

$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

You can simplify the product of numbers with rational exponents m and n by raising the number to the sum of the exponents using the rule

$$a^m \cdot a^n = a^{m+n}$$

Problem

What is the simplified form of each expression?

a.
$$36^{\frac{1}{4}} \cdot 36^{\frac{1}{4}}$$

$$36^{\frac{1}{4}} \cdot 36^{\frac{1}{4}} = 36^{\frac{1}{4} + \frac{1}{4}}$$
 Use $a^m \cdot a^n = a^{m+n}$.
 $= 36^{\frac{1}{2}}$ Add.
 $= \sqrt[4]{36}$ Use $x^{\frac{1}{n}} = \sqrt[n]{x}$.
 $= 6$ Simplify.

b. Write
$$(6x^{\frac{2}{3}})(2x^{\frac{3}{4}})$$
 in simplified form.

$$(6x^{\frac{2}{3}})(2x^{\frac{3}{4}}) = 6 \cdot 2 \cdot x^{\frac{2}{3}} \cdot x^{\frac{3}{4}}$$
 Commutative and Associative Properties of Multiplication
$$= 6 \cdot 2 \cdot x^{\frac{2}{3} + \frac{3}{4}}$$
 Use $x^m \cdot x^n = x^{m+n}$.
$$= 12x^{\frac{17}{12}}$$
 Simplify.

Exercises

Simplify each expression. Assume that all variables are positive.

1.
$$5^{\frac{1}{3}} \cdot 5^{\frac{2}{3}}$$
 5

2.
$$(2y^{\frac{1}{4}})(3y^{\frac{1}{3}})$$
 6 $y^{\frac{7}{12}}$

2.
$$(2y^{\frac{1}{4}})(3y^{\frac{1}{3}})$$
 6y $(-11)^{\frac{1}{3}} \cdot (-11)^{\frac{1}{3}} \cdot (-11)^{\frac{1}{3}}$ **-11**

4.
$$-y^{\frac{2}{3}}y^{\frac{1}{5}} -y^{\frac{13}{15}}$$

5.
$$5^{\frac{1}{4}} \cdot 5^{\frac{1}{4}} \sqrt{5}$$

4.
$$-y^{\frac{2}{3}}y^{\frac{1}{5}} - y^{\frac{13}{15}}$$
 5. $5^{\frac{1}{4}} \cdot 5^{\frac{1}{4}}\sqrt{5}$ **6.** $(-3x^{\frac{1}{6}})(7x^{\frac{2}{6}}) - 21\sqrt{x}$

Reteaching (continued)

Rational Exponents

To write an expression with rational exponents in simplest form, simplify all exponents and write every exponent as a positive number using the following rules for $a \neq 0$ and rational numbers m and n:

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-n} = \frac{1}{a^n}$$
 $\frac{1}{a^{-m}} = a^m$ $(a^m)^n = a^{mn}$ $(ab)^m = a^m b^m$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

Problem

What is $(8x^9y^{-3})^{-\frac{2}{3}}$ in simplest form?

$$(8x^9y^{-3})^{-\frac{2}{3}} = (2^3x^9y^{-3})^{-\frac{2}{3}}$$

Factor any numerical coefficients.

$$= (2^3)^{-\frac{2}{3}} (x^9)^{-\frac{2}{3}} (y^{-3})^{-\frac{2}{3}}$$

Use the property $(ab)^m = a^m b^m$.

$$= 2^{-2}x^{-6}y^2$$

Multiply exponents, using the property $(a^m)^n = a^{mn}$.

$$=\frac{y^2}{2^2x^6}$$

Write every exponent as a positive number.

$$=\frac{y^2}{4x^6}$$

Simplify.

Exercises

Write each expression in simplest form. Assume that all variables are positive.

7.
$$(16x^2y^8)^{-\frac{1}{2}} \frac{1}{4xy^4}$$

8.
$$(z^{-3})^{\frac{1}{9}} \frac{1}{z^{\frac{1}{3}}}$$

9.
$$(2x^{\frac{1}{4}})^4$$
 16x

10.
$$(25x^{-6}y^2)^{\frac{1}{2}} \frac{5y}{x^3}$$
 11. $(8a^{-3}b^9)^{\frac{2}{3}} \frac{4b^6}{a^2}$

11.
$$(8a^{-3}b^9)^{\frac{2}{3}} \frac{4b^6}{a^2}$$

12.
$$\left(\frac{16z^4}{25x^8}\right)^{-\frac{1}{2}} \frac{5x^4}{4z^2}$$

13.
$$\left(\frac{x^2}{y^{-1}}\right)^{\frac{1}{5}} x^{\frac{2}{5}} y^{\frac{1}{5}}$$

14.
$$(27m^9 n^{-3})^{-\frac{2}{3}} \frac{n^2}{9m^6}$$

15.
$$\left(\frac{32r^2}{2s^4}\right)^{\frac{1}{4}} \frac{2r_2^2}{s}$$

16.
$$(9z^{10})^{\frac{3}{2}}$$
 27 z^{15}

17.
$$(-243)^{-\frac{1}{5}}$$
 $-\frac{1}{3}$

18.
$$\left(\frac{x^{\frac{2}{5}}}{y^{\frac{1}{2}}}\right)^{10} \frac{x^4}{y^5}$$