_____ Class _____ Date ____

Reteaching

Inverse Relations and Functions

- Inverse operations "undo" each other. Addition and subtraction are inverse operations. So are multiplication and division. The inverse of cubing a number is taking its cube root.
- If two functions are inverses, they consist of inverse operations performed in the opposite order.

Problem

What is the inverse of the relation described by f(x) = x + 1?

$$f(x) = x + 1$$

y = x + 1 Rewrite the equation using y, if necessary.

$$x = v + 1$$

x = y + 1 Interchange x and y.

$$x-1=v$$

Solve for y.

$$y = x - 1$$

The resulting function is the inverse of the original function.

So,
$$f^{-1}(x) = x - 1$$
.

Exercises

Find the inverse of each function.

1.
$$y = 4x - 5$$

 $f^{-1} = \frac{x + 5}{4}$

2.
$$y = 3x^3 + 2$$

 $f^{-1} = \sqrt[3]{\frac{x-2}{2}}$

3.
$$y = (x + 1)^3$$

 $f^{-1} = \sqrt[3]{x} - 1$

4.
$$y = 0.5x + 2$$

 $f^{-1} = 2x - 4$

5.
$$f(x) = x + 3$$

 $f^{-1}(x) = x - 3$

6.
$$f(x) = 2(x - 2)$$

 $f^{-1}(x) = \frac{x + 4}{2}$

7.
$$f(x) = \frac{x}{5}$$

 $f^{-1}(x) = 5x$

8.
$$f(x) = 4x + 2$$

 $f^{-1}(x) = \frac{x-2}{4}$

9.
$$y = x$$
 $f^{-1} = x$

10.
$$y = x - 3$$
 $f^{-1} = x + 3$

11.
$$y = \frac{x-1}{2}$$

 $f^{-1} = 2x + 1$

12.
$$y = x^3 - 8$$

 $f^{-1} = \sqrt[3]{x + 8}$

13.
$$f(x) = \sqrt{x+2}$$

$$f(x) = \sqrt{x} + 2$$
 14. $f(x) = \frac{3}{3}x - 1$
 $f^{-1}(x) = x^2 - 2$ for $x \ge -2$ $f^{-1}(x) = \frac{3}{2}(x + 1)$

13.
$$f(x) = \sqrt{x+2}$$
 14. $f(x) = \frac{2}{3}x - 1$ 15. $f(x) = \frac{x+3}{5}$ $f^{-1}(x) = x^2 - 2$ for $x \ge -2$ $f^{-1}(x) = \frac{3}{5}(x+1)$ $f^{-1}(x) = 5x - 3$

16.
$$f(x) = 2(x-5)^2$$
 17. $y = \sqrt{x} + 4$ $f^{-1}(x) = 5 \pm \sqrt{\frac{x}{2}}$ $f^{-1} = (x-4)$

17.
$$y = \sqrt{x} + 4$$

17.
$$y = \sqrt{x} + 4$$

 $f^{-1} = (x - 4)^2 \text{ for } x \ge 0$
18. $y = 8x + 1$
 $f^{-1} = \frac{x - 1}{8}$

18.
$$y = 8x + 1$$

Reteaching (continued)

Inverse Relations and Functions

Examine the graphs of $f(x) = \sqrt{x-2}$ and its inverse, $f^{-1}(x) = x^2 + 2$, at the right.

Notice that the range of f and the domain of f^{-1} are the same: the set of all real numbers $x \ge 0$.

Similarly, the domain of f and the range of f^{-1} are the same: the set of all real numbers $x \ge 2$.

This inverse relationship is true for all relations whenever both f and f^{-1} are defined.

Problem

What are the domain and range of the inverse of the function $f(x) = \sqrt{3 - x}$?

f is defined for $3 - x \ge 0$ or $x \le 3$.

Therefore, the domain of f and the range of f^{-1} is the set of all $x \leq 3$.

The range of f is the set of all $x \ge 0$. So, the domain of f^{-1} is the set of all $x \ge 0$.

Exercises

Name the domain and range of the inverse of the function.

19. v = 2x - 1

The domain and the range is the set of all real numbers.

- **22.** $v = \sqrt{-x} + 8$ domain: $x \ge 8$; range: $y \le 0$
- **25.** $y = x^2 6$ domain: $x \ge -6$;

range: all real numbers

20. $y = 2 - \frac{1}{x}$

domain: $x \neq 2$; range: $y \neq 0$

- **23.** $y = 3\sqrt{x} + 2$ domain: $x \ge 2$; range: $y \ge 0$
- **26.** $y = \frac{1}{x+4}$

domain: $x \neq 0$; range: $v \neq -4$

21. $y = \sqrt{x+5}$

domain: $x \ge 0$; range: $y \ge -5$

24. $y = (x - 6)^2$ domain: $x \ge 0$; range: all real numbers

domain: x > 0; range: $v \neq -4$