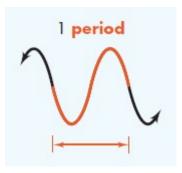
ALGEBRA 2 B – UNIT 7 – PERIODIC FUNCTIONS & TRIGONOMETRY

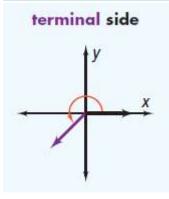
Math Usage: The period of a function is the horizontal length of one cycle. A *periodic function* is a function that repeats a pattern of *y*-values at regular intervals. The *amplitude* of a periodic function measures the amount of variation in the function values.



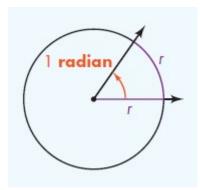
The midline is the horizontal line midway between the maximum and minimum values of a periodic function. The amplitude is half the difference between the maximum and minimum values of the function.

amplitude = $\frac{1}{2}$ (maximum value – minimum value)

Math Usage: An angle in standard position is formed by rotating a ray from the *x*-axis about its endpoint. The fihat position of the ray is the terminal side of the angle. Two angles in standard position are *coterminal* angles if they have the same terminal side.



Math Usage: Radians measure the amount of rotation from the initial side to the terminal side of an angle. An angle with a full-circle rotation measures 2π radians.



Convert Between Radians and Degrees

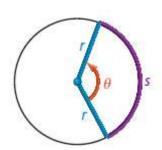
Use the proportion $\frac{d^{\circ}}{180^{\circ}} = \frac{r \text{ radians}}{\pi \text{ radians}}$ to convert between radians and degrees.

To convert degrees to radians, multiply by $\frac{\pi \text{ radians}}{180^{\circ}}$.

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text{ radians}}$.

Length of an Intercepted Arc

For a circle of radius r and a central angle of measure θ (in radians), the length s of the intercepted arc is $s = r\theta$.



All content from Algebra 2, 2011, Prentice Hall, Pearson.

Main Idea: Trigonometry relates the measures of angles of a triangle to the lengths of its sides.

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

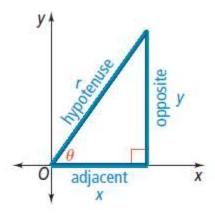
$$\tan A = \frac{a}{b}$$

Remember: SOH-CAH-TOA

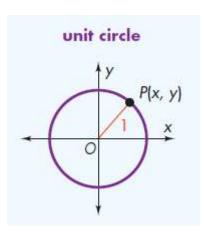
$$\sin \theta = \frac{y}{r} = \frac{\text{OPP}}{\text{HYP}} \qquad \qquad \csc \theta = \frac{r}{y} = \frac{\text{HYP}}{\text{OPP}}$$

$$\cos \theta = \frac{x}{r} = \frac{\text{ADJ}}{\text{HYP}} \qquad \qquad \sec \theta = \frac{r}{x} = \frac{\text{HYP}}{\text{ADJ}}$$

$$\tan \theta = \frac{y}{x} = \frac{\text{OPP}}{\text{ADJ}} \qquad \qquad \cot \theta = \frac{x}{y} = \frac{\text{ADJ}}{\text{OPP}}$$



Definition: A unit circle is a circle with radius 1 centered at (0, 0) on the coordinate plane.



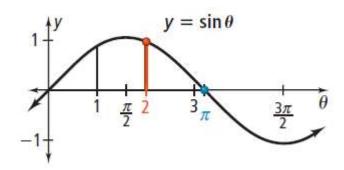
Main Idea: For any point (x, y) on the unit circle, a right triangle can be formed with a hypotenuse of length 1 and side lengths x and y. Using the definition of sine and cosine, $x = \cos \theta$, and $y = \sin \theta$.

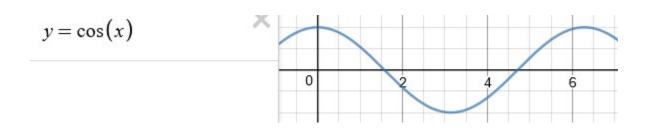
Definition: If the terminal side of an angle θ in standard position intersects the unit circle at the point (x, y), then the sine of θ is the *y*-coordinate of the point (x, y).

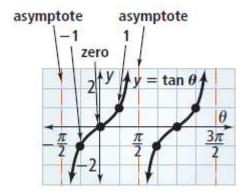
Definition: If the terminal side of an angle θ in standard position intersects the unit circle at the point (x, y), then the cosine of θ is the x-coordinate of the point (x, y).

Definition: If the terminal side of an angle θ in standard position intersects the unit circle at the point (x, y) then the tangent of θ is the ratio of the *y*-coordinate to the *x*-coordinate, $\frac{y}{x}$.

Function	Domain	Range	Function Function	Domain	Range
$y = \cos \theta$	$0 \le \theta \le \pi$	$-1 \le y \le 1$	$\theta = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le \theta \le \pi$
$y = \sin \theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$-1 \le y \le 1$	$\theta = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$y = \tan \theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	y is any real number	$\theta = \tan^{-1} x$	x is any real number	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$







Sine and Cosine Functions

Parents
$$y = \sin x$$
 $y = \cos x$
Reflection across $y = -\sin x$ $y = -\cos x$

x-axis

Amplitude
$$|a|$$
 $y = a \sin x$ $y = a \cos x$

Period
$$\frac{2\pi}{b}$$
, $b > 0$ $y = \sin bx$ $y = \cos bx$

Translation

horizontal by
$$h$$

vertical by k $y = \sin(x - h) + k$ $y = \cos(x - h) + k$

Tangent Function

Parent
$$y = \tan x$$

Reflection across x-axis $y = -\tan x$

Period $\frac{\pi}{b}$ $y = \tan bx$

Translation

horizontal by
$$h$$

vertical by k $y = \tan(x - h) + k$

Asymptotes (tan bx)
$$x = n \frac{\pi}{2b}$$
, n odd

Basic Identities

Reciprocal Identities:

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sin \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

Tangent Identity: Cotangent Identity:
$$\sin \theta$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$\cos^2 \theta + \sin^2 \theta = 1$$
 $1 + \tan^2 \theta = \sec^2 \theta$ $\cot^2 \theta + 1 = \csc^2 \theta$

All content from Algebra 2, 2011, Prentice Hall, Pearson.