Chapter 1 Expressions, Equations, and Inequalities

Order of Operations

- 1. Perform any operation(s) inside grouping symbols.
- 2. Simplify any terms with exponents.
- 3. Multiply and divide in order from left to right.
- 4. Add and subtract in order from left to right.

[Also known as PEMDAS]

Closure

For all real numbers a and b, a + b and $a \cdot b$ are real numbers.

The Associative Properties

For all real numbers a, b, and c:

$$(a+b)+c=a+(b+c)$$
$$(a \cdot b) \cdot c=a \cdot (b \cdot c)$$

The Commutative Properties

For all real numbers a and b:

$$a + b = b + a$$
 and $a \cdot b = b \cdot a$

The Identity Properties

For every real number a:

$$a + 0 = a$$
 and $0 + a = a$ $a \cdot 1 = a$ and $1 \cdot a = a$
0 is the additive identity. 1 is the multiplicative identity.

The Inverse Properties

For every real number a:

$$a + (-a) = 0$$
 and $a \cdot \frac{1}{a} = 1$ $(a \neq 0)$

The Distributive Properties

For all real numbers a, b, and c:

$$a(b+c)=ab+ac$$
 $(b+c)a=ba+ca$
 $a(b-c)=ab-ac$ $(b-c)a=ba-ca$

Multiplication

Let a represent a real number. Multiplication by 0: $0 \cdot a = 0$. Multiplication by -1: $-1 \cdot a = -a$

Opposites

Let a and b represent real numbers.

Opposite of a Sum: -(a + b) = -a + (-b) = -a - b

Opposite of a Difference: -(a - b) = -a + b = b - a

Opposite of a Product: $-(ab) = -a \cdot b = a \cdot (-b)$

Opposite of an Opposite: -(-a) = a

Properties of Equality

Assume a, b, and c represent real numbers.

Reflexive: a = a

Symmetric: If a = b, then b = a.

Transitive: If a = b and b = c, then a = c. Substitution: If a = b, then you can replace a with b and

vice versa.

Addition: If a = b, then a + c = b + c. Subtraction: If a = b, then a - c = b - c.

Multiplication: If a = b, then ac = bc.

If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$. Division:

Properties of Inequality

Let a, b, and c represent real numbers.

If a > b and b > c, then a > c. Transitive:

Addition: If a > b, then a + c > b + c. Subtraction: If a > b, then a - c > b - c.

Multiplication: If a > b and c > 0, then ac > bc.

If a > b and c < 0, then ac < bc.

If a > b and c > 0, then $\frac{a}{c} > \frac{b}{c}$. Division:

If a > b and c < 0, then $\frac{a}{c} < \frac{b}{c}$.