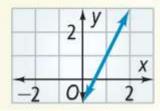
Chapter 2 Functions, Equations, and Graphs

Direct Variation

$$y = kx$$
 or $\frac{y}{x} = k$, where $k \neq 0$.


Slope of a Line Containing (x_1, y_1) and (x_2, y_2) slope = $\frac{\text{vertical change (rise)}}{\text{horizontal change (run)}} = \frac{y_2 - y_1}{x_2 - x_1}$,

slope =
$$\frac{\text{vertical change (rise)}}{\text{horizontal change (run)}} = \frac{y_2 - y_1}{x_2 - x_1}$$

where $x_2 - x_1 \neq 0$

When two lines have the same slope, they are **parallel**. When two lines have slopes that are negative reciprocals of each other, they are perpendicular.

Slope-Intercept Form (Lesson 2-3)

$$y = mx + b$$
$$y = 2x - 1$$

Point-Slope Equation of a Line

The equation of the line through point (x_1, y_1) with slope m is $y - y_1 = m(x - x_1)$.

A **relation** is a set of ordered pairs. The **domain** of a relation is the set of x-coordinates. The range is the set of y-coordinates. When each element of the domain is paired with exactly one element of the range, the relation is a function.

Function Families

Assume a, k, and h are positive numbers.

V = f(x)Parent

v = -f(x)Reflection across x-axis

Vertical stretch (a > 1) y = af(x)

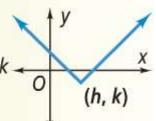
Vertical shrink (0 < a < 1)

Translation

horizontal to left by h y = f(x + h)

horizontal to right by h y = f(x - h)

y = f(x) + kvertical up by k


vertical down by k y = f(x) - k

Absolute Value Functions and Graphs (Lesson 2-7)

Parent: y = |x|

General form: y = a|x - h| + k

vertex: (h, k)

Two Variable Inequalities

An inequality describes a region of the coordinate plane that has a **boundary**. To graph an inequality involving two variables, first graph the boundary. Then determine which side of the boundary contains the solutions. Points on a dashed boundary are not solutions. Points on a solid boundary are solutions.