UNIT 2 REVIEW

PRECALCULUS A

LESSONS:

- DOMAIN & RANGE OF A FUNCTION
- ALGEBRA OF FUNCTIONS
- COMPOSITION OF FUNCTIONS
- INVERSE FUNCTIONS
- -VERIFYING INVERSE FUNCTIONS
- GRAPHS OF INVERSE FUNCTIONS

OUR CLASS WEBSITE: nca-patterson.weebly.com BOOK A CALL TIME: jpattersonmath.youcanbook.me **Domain** is the allowed values for x in a function.

Domain Restrictions:

- 1) Denominators cannot be equal to zero.
- 2) The radicand of a square root must be >= to zero.
 - *Note: If there is a square root in a denominator then it can't be zero, so check for > zero.

Range is the allowed values for y in a function.

Range Restrictions:

- 1) Graph with Desmos.
- 2: Look for asymptote lines.

Interval Notation

* Looks at the end points of the domain and range.

- 1) Use parentheses () for open interval end points.
- 2) Use brackets [] for closed interval end points
- 3) Infinity is always an open interval 😊

Set Builder Notation

* Uses inequalities to identify the end points.

- 1) Domain: {x| _____ }
 - Read as "the set of all x such that x is _____"
- 2) Range: {y| _____ }
 - Read as "the set of all y such that y is _____"

 $[2,\infty)$ $(-\infty,\infty)$ $(-\infty,2] [5,\infty)$ [2,5]

6. Let
$$f(x) = \frac{1}{x+2}$$
 and $g(x) = \frac{1}{x-3}$. Find $\left(\frac{f}{g}\right)(x)$. Assume all appropriate restrictions to the domain.
 $\left(\frac{f}{g}\right)(x) = \frac{x+2}{x-3}$
 $\left(\frac{f}{g}\right)(x) = \frac{x-3}{x+2}$
 $\left(\frac{f}{g}\right)(x) = \frac{1}{x^2-x+6}$
 $\left(\frac{f}{g}\right)(x) = x^2-x+6$

It can also be written as g(f(x)). It is read as "g of f of x".

3. Determine the domain of the function $(f \circ g)(x)$ where $f(x) = \frac{x^2}{x^2 - 1}$ and $g(x) = \sqrt{x + 4}$.

$$(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$$

 $(-4, -3) \cup (-3, \infty)$
 $(-\infty, -3) \cup (-3, \infty)$
 $[-4, -3) \cup (-3, \infty)$

Verifying Inverse Functions:

Inverses "reverse" each other.

So, in doing a composite, you should get that (f o g)(x) = (g o f)(x)

If they are not equal, then the functions are not inverses.

1. Determine if the two functions f and g are inverses of each other algebraically. If not, why?

$$f(x) = \frac{2x+3}{4x-3}; g(x) = \frac{3x+3}{4x-2}$$

Verifying Inverse Functions:

... So, yes, the composition of inverse functions will always be equal to x!!

Think about it. If you plug x into a function, then take the result and reverse it with the inverse function, you should end up back where you started!

Questions??

Review the Key Terms and Key Concepts documents for this unit.

Look up the topic at khanacademy.org and virtualnerd.com

Check our class website at nca-patterson.weebly.com

*Reserve a time for a call with me at jpattersonmath.youcanbook.me We can use the LiveLesson whiteboard to go over problems together.

