UNIT 2 REVIEW

PRECALCULUS A

LESSONS:

- DOMAIN \& RANGE OF A FUNCTION
- ALGEBRA OF FUNCTIONS
- COMPOSITION OF FUNCTIONS
- INVERSE FUNCTIONS
-VERIFYING INVERSE FUNCTIONS
- GRAPHS OF INVERSE FUNCTIONS

OUR CLASS WEBSITE: nca-patterson.weebly.com
BOOK A CALL TIME: jpattersonmath.youcanbook.me

Domain is the allowed values for x in a function.

Domain Restrictions:

1) Denominators cannot be equal to zero.
2) The radicand of a square root must be $>=$ to zero. *Note: If there is a square root in a denominator then it can't be zero, so check for > zero.

Range is the allowed values for y in a function.
Range Restrictions:

1) Graph with Desmos.

2: Look for asymptote lines.

Interval Notation

* Looks at the end points of the domain and range.

1) Use parentheses () for open interval end points.
2) Use brackets [] for closed interval end points
3) Infinity is always an open interval (:)

Set Builder Notation

* Uses inequalities to identify the end points.

1) Domain: \{x| \qquad \}
Read as "the set of all x such that x is \qquad "
2) Range: $\{y \mid$ \qquad \}
Read as "the set of all y such that y is \qquad "

Algebra of Functions: You can ...

ADD Functions ... just combine like terms
SUBTRACT Functions ... but watch the sign changes!
MULTIPLY Functions ... just remember to distribute all terms
DIVIDE Functions ... but watch for what would make the denominator zero
3. Find the domain of the function $(f \cdot g)(x)$ where $f(x)=\sqrt{x-2}$ and $g(x)=\sqrt{5-x}$. $[2, \infty)$
$(-\infty, \infty)$
$(-\infty, 2] \cup[5, \infty)$
[2,5]
3. Find the domain of the function $(f \cdot g)(x)$ where $f(x)=\sqrt{x-2}$ and $g(x)=\sqrt{5-x}$. $[2, \infty)$
$(-\infty, \infty)$
$(-\infty, 2] \cup[5, \infty)$
$[2,5]$

6. Let $f(x)=\frac{1}{x+2}$ and $g(x)=\frac{1}{x-3}$. Find $\left(\frac{f}{g}\right)(x)$. Assume all appropriate restrictions to the domain.
$\left(\frac{f}{g}\right)(x)=\frac{x+2}{x-3}$
$\left(\frac{f}{g}\right)(x)=\frac{x-3}{x+2}$
$\left(\frac{f}{g}\right)(x)=\frac{1}{x^{2}-x+6}$
$\left(\frac{f}{g}\right)(x)=x^{2}-x+6$

Composition of Functions:

$(f \circ g)(x)$ means to plug in what the $g(x)$ function is equal to into the spots for x in the $f(x)$ function.

It can also be written as $f(g(x))$.
It is read " f of g of x ".
$(g \circ f)(x)$ means to plug in what the $f(x)$ function is equal to into the spots for x in the $g(x)$ function.

It can also be written as $g(f(x))$.
It is read as " g of f of x ".
3. Determine the domain of the function $(f \circ g)(x)$ where $f(x)=\frac{x^{2}}{x^{2}-1}$ and $g(x)=\sqrt{x+4}$.
$(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
$(-4,-3) \cup(-3, \infty)$
$(-\infty,-3) \cup(-3, \infty)$
$[-4,-3) \cup(-3, \infty)$
3. Determine the domain of the function $(f \circ g)(x)$ where $f(x)=\frac{x^{2}}{x^{2}-1}$ and $g(x)=\sqrt{x+4}$.

$$
(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

$(-4,-3) \cup(-3, \infty)$
$(-\infty,-3) \cup(-3, \infty)$
$\square[-4,-3) \cup(-3, \infty)$

(1) $\frac{(x+4)}{x+3}$

Inverses of Functions:

Basically, the x 's and y 's switch places!
If the starting function is a one-to-one function, then it's inverse will also qualify as a function.

A one-to-one function means every x value yields only one y, AND, each y value came from only one x.

Test for a one-to-one function using the Horizontal Line Test, after using the Vertical Line Test to test that it is a function.

One-To-One?

Yes

No

4. Determine the domain and range for the inverse of $f(x)=\frac{1}{x}+5$.
4. Determine the domain and range for the inverse of $f(x)=\frac{1}{x}+5$.

Original Function: Domain breaks at $x=0$ Range breaks at $y=5$

Inverse Function:
Domain breaks at $\mathrm{x}=5$
Range breaks at $\mathrm{y}=\mathrm{O}$
... for Interval Notation:
(1pts) domain: $(-\infty, 5) \cup(5, \infty)$
range: $(-\infty, 0) \cup(0, \infty)$

Verifying Inverse Functions:

Inverses "reverse" each other.
So, in doing a composite, you should get that $(f \circ g)(x)=(g \circ f)(x)$

If they are not equal, then the functions are not inverses.

1. Determine if the two functions f and g are inverses of each other algebraically. If not, why?
$f(x)=\frac{2 x+3}{4 x-3} ; g(x)=\frac{3 x+3}{4 x-2}$

Verifying Inverse Functions:

... So, yes, the composition of inverse functions will always be equal to x !!

Think about it.
If you plug x into a function, then take the result and reverse it with the inverse function, you should end up back where you started!

Graphing Inverse Functions:

The graphs of inverse functions will be symmetrical about the diagonal line $y=x$.

The inverses are $g(x)$ and $f(x)$.
... $g(x)$ and $h(x)$ are translations

Questions??

Review the Key Terms and Key Concepts documents for this unit.
Look up the topic at khanacademy.org and virtualnerd.com
Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard
to go over problems together.

