UNIT 3 Lessons 5-6

PRECALCULUS A

LESSONS:

- Linear, Absolute Value, \& Reciprocal

Functions

- Power, Root, Exponential, Logarithmic

Functions
our class website: nca-patterson.weebly.com
book a call time: jpattersonmath.youcanbook.me

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

Yes, doing the "specs" can get monotonous . . .

But just like shopping for a phone and checking on the gigahertz, megapixels, RAM, etc.
Knowing the "specs" helps you make a better decision.
And if a function describes the situation you have to make a decision about,
Knowing the "specs" helps you make a better decision!
So, here we go . . .

Oh, and remember that

PARENT FUNCTIONS

are the basic version of each type of function
without any transformations.
(not yet!. . . that's next week)

LINEAR PARENT FUNCTION

$$
f(x)=x
$$

Key Concept

Characteristics of the Parent Linear Function: $f(x)=x$

- domain: $(-\infty, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$

CONSTANT FUNCTION

... a type of linear function
$y=c$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

CONSTANT FUNCTION

... a type of linear function

$$
f(x)=c
$$

Key Concept

Characteristics of the Constant Function: $f(x)=c$

- domain: $(-\infty, \infty)$
- range: \{c\}
- increasing intervals: none
- decreasing intervals: none
- constant intervals: $(-\infty, \infty)$
- x-intercept: none if $c \neq 0$; if $c=0$, the function's graph is the x-axis
- y-intercept: $(0, c)$
- even, odd, neither: even; if $c=0$ the function is also odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow c$ as $x \rightarrow \infty ; f(x) \rightarrow c$ as $x \rightarrow-\infty$

Notice that the range cannot be written as an interval.

ABSOLUTE VALUE FUNCTION

$y=|x|$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

ABSOLUTE VALUE FUNCTION

$$
f(x)=|x|
$$

Key Concept

Characteristics of the Parent Absolute Value Function: $f(x)=|x|$

- domain: $(-\infty, \infty)$
- range: $[0, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: $(-\infty, 0)$
- constant intervals: none
- x-intercept $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: even
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow-\infty$

RECIPROCAL FUNCTION

$$
y=1 / x
$$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

POWER FUNCTION - EVEN n

$$
y=x^{\wedge} n
$$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

POWER FUNCTION - ODD n

$$
y=x^{\wedge} n
$$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

POWER FUNCTION - ODD n

$$
f(x)=x^{\wedge} n
$$

Characteristics of Odd-Degree Power Functions: $f(x)=x^{n}$, where \boldsymbol{n} is an odd integer greater than zero

- domain: $(-\infty, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$

ROOT FUNCTION - EVEN n

$$
y=n v x
$$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

Remember, roots can be written as rational (fraction) exponents!

ROOT FUNCTION - EVEN n

$$
f(x)=n \sqrt{x}
$$

Key Concept

Characteristics of Even-Index Root Functions: $f(x)=\sqrt[n]{x}$, where \boldsymbol{n} is an even integer greater than zero

- domain: $[0, \infty)$
- range: $[0, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty$

Remember, we can't use the negative side of an even root, or it won't qualify as a function!

ROOT FUNCTION - ODD n

$$
y=n \sqrt{x}
$$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

EXPONENTIAL FUNCTION

$$
y=b^{\wedge} x
$$

Growth when $b>1$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

EXPONENTIAL FUNCTION
$f(x)=b^{\wedge} x$
Growth when b>1

Key Concept

Characteristics of Exponential Functions: $f(x)=b^{x}, b>1$

- domain: $(-\infty, \infty)$
- range: $(0, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: none
- y-intercept: $(0,1)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $y=0$
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow 0$ as $x \rightarrow-\infty$

How do you know there's no vertical asymptote? Zoom in on Desmos. Now you know that to be true for all transformations of this function!

EXPONENTIAL FUNCTION $\mathbf{y}=\mathbf{b}^{\wedge} \mathbf{x}$
Decay when $0<b<1$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

EXPONENTIAL FUNCTION

$f(x)=b^{\wedge} x$ Decay when $0<b<1$

Characteristics of Exponential Functions: $f(x)=b^{x}, 0<b<1$

- domain: $(-\infty, \infty)$
- range: $(0, \infty)$
- increasing intervals: none
- decreasing intervals: $(-\infty, \infty)$
- constant intervals: none
- x-intercept: none
- y-intercept: $(0,1)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $y=0$
- end behavior: $f(x) \rightarrow 0$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow-\infty$

Remember, these functions are inverses . . .

EXPONENTIAL FUNCTION
$f(x)=b^{\wedge} x$

LOGARITHMIC FUNCTION
$f(x)=\log _{b} x$

LOGARITHMIC FUNCTION
$f(x)=\log _{b} x$ when $b>1$

Key Concept

Characteristics of the Parent Logarithmic Function: $f(x)=\log _{b} x, b>1$

- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(1,0)$
- y-intercept: none
- even, odd, neither neither
- continuous or discontinuous: continuous
- asymptotes: $x=0$
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow 0$

LOGARITHMIC FUNCTION

$y=\log _{b} x$
when $0<b<1$

Identify for each parent function:

- Domain \& Range
- Intervals where increasing, decreasing, or constant
- The x-intercepts \& y-intercepts
- Even, Odd, or neither
- Continuous or Discontinuous
- Asymptotes
- End Behavior

LOGARITHMIC FUNCTION

$$
f(x)=\log _{b} x
$$

when $0<b<1$

Characteristics of the Parent Logarithmic Function: $f(x)=\log _{b} x, 0<b<1$

- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: none
- decreasing intervals: $(0, \infty)$
- constant intervals: none
- x-intercept: $(1,0)$
- y-intercept: none
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $x=0$
- end behavior: $f(x) \rightarrow-\infty$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow 0$

. . . then next week . . .

TRANSFORMATIONS!!!

??what "specs" will change??

Questions??

Review the Key Terms and Key Concepts documents for this unit.
Look up the topic at khanacademy.org and virtualnerd.com

Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at
jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard to go over problems together.

