UNIT 4 LESSONS 5-6

PRECALCULUSA

LESSONS:

- Graphs of Rational Functions
- Operations with Rational Functions

What is a Rational Function???

What is a Rational Function???

... Rational uses the word Ratio
. Ratios are written as Fractions
... so a Rational Function is a fraction full of algebra!!!
... specifically, a fraction of Polynomials!

But fractions can get messy!
... Yep :

Just carefully follow the processes you learned for fractions.

Denominators are NOT allowed to equal zero!!
\& any value for x that would make a denominator = 0 becomes a restriction on the domain

What is the domain??

$$
g(x)=\frac{x+1}{x^{2}-3 x-10}
$$

What is the domain??

$$
g(x)=\frac{x+1}{x^{2}-3 x-10}
$$

The domain is any value for x, except what would make the denominator equal to zero.

What is the domain??

$$
g(x)=\frac{x+1}{x^{2}-3 x-10}
$$

So, set the denominator equal to zero and solve for x .

$$
x^{2}-3 x-10=0
$$

What is the domain??

$$
\begin{aligned}
& g(x)= \frac{x+1}{x^{2}-3 x-10} \\
& x^{2}-3 x-10=0 \\
&(x+2)(x-5)=0 \\
& x=-2 \text { or } x=5
\end{aligned}
$$

So, the Domain is:

$$
(-\infty,-2) \cup(-2,5) \cup(5, \infty)
$$

Now see it on the graph:

$$
g(x)=\frac{x+1}{x^{2}-3 x-10} \quad(-\infty,-2) \cup(-2,5) \cup(5, \infty)
$$

$$
\text { (} \frac{(x+1)}{x^{2}-3 x-10}
$$

Wherever there is a break in the domain,
it is either a \qquad ,
or a \qquad .

Wherever there is a break in the domain,
it is either a vertical asymptote, or a removable discontinuity.

Vertical Asymptotes at $x=-2$ and at $x=5$

$$
g(x)=\frac{x+1}{x^{2}-3 x-10} \quad(-\infty,-2) \cup(-2,5) \cup(5, \infty)
$$

But when you factor the function and it has common factors than can be cancelled out . . .
$f(x)=\frac{8 x-8}{x^{2}+3 x-4} \longrightarrow f(x)=\frac{8(x-1)}{(x-1)(x+4)}$

You get \qquad

But when you factor it and it has common factors than can be cancelled out...

$$
f(x)=\frac{8 x-8}{x^{2}+3 x-4} \quad \Rightarrow \quad f(x)=\frac{8(x-1)}{(x-1)(x+4)}
$$

You get...

- Domain restrictions at the zeros of the denominator
- A removable discontinuity at the cancelled factor
- A vertical asymptote at the remaining denominator factor

But when you factor it and it has common factors than can be cancelled out . . .

$$
f(x)=\frac{8 x-8}{x^{2}+3 x-4} \Rightarrow f(x)=\frac{8(x-1)}{(x-1)(x+4)}
$$

You get...

- Domain restrictions at the zeros of the denominator
- A vertical asymptote at the remaining denominator factor
- A removable discontinuity at the cancelled factor

NOTE: The removable discontinuity WON'T show on Desmos!
... But you need to know it is there!

One more time . . .

$$
f(x)=\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x}
$$

What are the restrictions on the domain?
How do you write this domain?
Are there any removable discontinuities?
Are there any vertical asymptotes?

One more time .. .

$$
f(x)=\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x}
$$

$1^{\text {st }}$ Factor!

One more time . . .

$$
f(x)=\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x}
$$

$1^{\text {st }}$ Factor!

$$
=\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)}
$$

Next, set each denominator factor equal to zero, and solve for x .

One more time .. .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)}
\end{aligned}
$$

Next, set each denominator factor equal to zero, and solve for \mathbf{x}.

$$
x=0, x=-\frac{5}{2} \text {, or } x=3 \text {. }
$$

One more time . . .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)} \\
x & =0, x=-\frac{5}{2}, \text { or } x=3 .
\end{aligned}
$$

These are the restrictions on the domain!

One more time .. .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)} \\
x & =0, x=-\frac{5}{2}, \text { or } x=3 .
\end{aligned}
$$

Domain: $\quad\left(-\infty,-\frac{5}{2}\right) \cup\left(-\frac{5}{2}, 0\right) \cup(0,3) \cup(3, \infty)$

One more time . . .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)} \\
x & =0, x=-\frac{5}{2}, \text { or } x=3 .
\end{aligned}
$$

Which restrictions are removable discontinuities, and which are vertical asymptotes??

One more time .. .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)} \\
x & =0, x=-\frac{5}{2}, \text { or } x=3 .
\end{aligned}
$$

Removable discontinuities happen at cancelled factors, so, there is a removable discontinuity at \qquad .
Vertical asymptote lines happen at the remaining denominator factors, so there are vertical asymptotes at
\qquad -

One more time . . .

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}-12 x+9}{2 x^{3}-x^{2}-15 x} \\
& =\frac{3(x-3)(x-1)}{x(2 x+5)(x-3)} \\
x & =0, x=-\frac{5}{2}, \text { or } x=3 .
\end{aligned}
$$

Removable discontinuities happen at cancelled factors, so, there is a removable discontinuity at $x=3$.
Vertical asymptote lines happen at the remaining denominator factors, so there are vertical asymptotes at $x=0$ and $x=-5 / 2$.

Then there are horizontal asymptotes...

Key Concept

Finding Horizontal Asymptotes

The rational function $f(x)=\frac{p(x)}{q(x)}$, where the degree of $p(x)$ is n and the degree of $q(x)$ is m, has the following characteristics:

- If $n<m$, then the function has a horizontal asymptote at $y=0$.
- If $n=m$, then the function has a horizontal asymptote at $y=\frac{a}{b}$, where a is the leading coefficient of p and b is the leading coefficient of q.
- If $n>m$, then there is no horizontal asymptote.

Then there are horizontal asymptotes...

In other words . . .

Then there are horizontal asymptotes...
$1^{\text {st }}$ Write the numerator and denominator in standard form (descending powers).
$2^{\text {nd }}$ Compare the degrees (highest power) of the numerator and denominator.

Then there are horizontal asymptotes...

IF the top degree is smaller than the bottom degree, then the horizontal asymptote is the line $\mathrm{y}=\mathrm{O}$.

IF the degrees are the same, then the horizontal asymptote is the line $y=$ the fraction made by the leading coefficients.

IF the top degree is larger than the bottom degree, then there is no horizontal asymptote line.

PRACTICE:

$$
f(x)=\frac{x^{2}}{x-6} \quad \begin{aligned}
& \text { Degree? } \\
& \text { Degree? }
\end{aligned}
$$

Horizontal
asymptote?

PRACTICE:

$$
f(x)=\frac{x^{2}}{x-6} \quad \begin{aligned}
& \text { Degree 2 } \\
& \text { Degree } 1
\end{aligned}
$$

Horizontal asymptote:

Top is larger, so none.

PRACTICE:

$$
g(x)=\frac{2 x^{3}+7}{x^{4}-3 x^{2}+2} \quad \text { Degree? }
$$

Horizontal
asymptote?

PRACTICE:

$$
g(x)=\frac{2 x^{3}+7}{x^{4}-3 x^{2}+2} \quad \begin{aligned}
& \text { Degree } 3 \\
& \text { Degree } 4
\end{aligned}
$$

Horizontal asymptote:

Top is smaller, so asymptote at $\mathrm{y}=\mathbf{0}$.

PRACTICE:
$h(x)=\frac{3 x^{2}-1}{4 x^{2}-2 x-5} \quad \begin{aligned} & \text { Degree? } \\ & \text { Degree } ?\end{aligned}$

Horizontal
asymptote?

PRACTICE:
$h(x)=\frac{3 x^{2}-1}{4 x^{2}-2 x-5} \quad \begin{aligned} & \text { Degree 2 } \\ & \text { Degree 2 }\end{aligned}$

Horizontal
asymptote:

Same, so
asymptote at $y=3 / 4$

NOTE:

For this pattern, double check if it is in standard form.

And always watch the signs.

And one more thing . . .

IF the top degree is exactly one more than the bottom degree...

THEN you have a Slant Asymptote!

Slant Asymptote:
The equation for this line

$$
f(x)=\frac{x^{2}-3 x+1}{x-4}
$$ will be what you get from dividing the top by the bottom, but without the remainder.

Yep, this means polynomial long division.

The slant asymptote for this is the line $y=x+1$

OPERATIONS with RATIONAL FUNCTIONS:

**Just follow the procedures you've always used for fractions!!

ADD/SUBTRACT: Get a common denominator first.
MULTILIPLY: Top times top \& bottom times bottom.
DIVIDE: Multiply by the reciprocal.

Questions??

Review the Key Terms and Key Concepts documents for this unit.
Look up the topic at khanacademy.org and virtualnerd.com

Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard to go over problems together.

