

The Parent Exponential Function:

$$
f(x)=b^{x}
$$

Where b is a positive real number and b is not equal to 1 .
... it is an exponential function because the variable is in the exponent!

Special Cases:

Exponential Growth:
Where $\mathrm{a}>\mathrm{O}$ and $\mathrm{b}>1$

$$
f(x)=a b^{x}
$$

Exponential Decay:

Where $\mathbf{a}>\mathbf{O}$ and $\mathbf{O}<\mathbf{b}<1 \quad f(x)=a b^{x}$
... FYI: a is the starting amount
And you don't start with a negative amount . . .

EXPONENTIALGROWTH

Notice
that "a"
is also
the y -
intercept
EXPONENTIAL DECAY

SHIFTS (TRANSLATIONS)

Vertical shifts (k) are added to the end of the function.

$$
g(x)=b^{x}+k
$$

Horizontal shifts (h) are subtracted from the x before

$$
g(x)=b^{x-h}
$$

doing the parent function.

Transformation: \qquad
Same or Different:

- Domain
- Range
- X-intercept
- Y-intercept
- Asymptote
- End Behavior

Transformation: Shift 3 right
Same or Different:

- Domain - same
- Range - same
- X-intercept - same (none)
- Y-intercept - different
- Asymptote - same
- End Behavior - same

Transformation: \qquad
Same or Different:

- Domain
- Range
- X-intercept
- Y-intercept
- Asymptote
- End Behavior

Transformation: Shift 3up

Same or Different:

- Domain - same
- Range - different (bottom is now 3)
- X-intercept - same (none)
- Y-intercept - different
- Asymptote - different (now y = 3)
- End Behavior - different (now \rightarrow 3, not O)

VERTICAL STRETCH/COMPRESS $g(x)=a b^{x}$

Same or Different:

- Domain - same
- Range - same
- X-intercept - same (none)
- Y-intercept - different
- Asymptote - same
- End Behavior - same

REFLECTION

A vertical reflection over the x-axis happens when the negative is at the beginning

$$
g(x)=-b^{x}
$$ of the function

A horizontal reflection over the y-axis happens when the negative is on the x before doing the parent function.

VERTICAL REFLECTION $\quad g(x)=-b^{x}$

Same or Different:

- Domain
- Range
- X-intercept
- Y-intercept
- Asymptote
- End Behavior

VERTRICAL REFLECTION $g(x)=-b^{x}$

Same or Different:

- Domain - same
- Range - different (reverses)
- X-intercept - same (none)
- Y-intercept - different (opposite)
- Asymptote - same
- End Behavior - different (in the $x \rightarrow+\infty$ direction)

HORIZONTAL REFLECTION $g(x)=b^{-x}$

Same or Different:

- Domain - same
- Range - same
- X-intercept - same (none)
- Y-intercept - same
- Asymptote - same
- End Behavior - different (reverses)

And, yes, we look at transformations of logarithms as well...

SHIFTS (TRANSLATIONS)

$$
\begin{array}{ll}
\text { Vertical Shift } & g(x)=\log _{b}(x)+k \\
\text { Horizontal Shift } & g(x)=\log _{b}(x-h)
\end{array}
$$

REFLECTION

A vertical reflection over the x -axis happens when the negative is at the beginning of the function

A horizontal reflection over the y-axis happens when the negative is on the x before

$$
g(x)=-\log _{b} x
$$ doing the parent function.

