

REMINDER:

When changing from Exponential form to Logarithmic form, the log always equals the exponent, and has the same base as the exponential function.

Exponential Form: $\quad 2^{x}=16$

Logarithmic Form:
$\log _{2} 16=x$

PRACTICE

1. Write the equation in logarithmic form.
2. Write the equation in logarithmic form.
$625=5^{4}$ (1 point)
$\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$ (1 point)

$$
\begin{array}{r}
\log _{4} 625=5 \\
\log _{5} 625=4 \\
\log _{5} 4=625 \\
\log _{4} 5=625
\end{array}
$$

$$
\begin{array}{r}
\forall \log _{\frac{1}{3}} \frac{1}{27}=3 \\
\log _{\frac{1}{3}} 3=\frac{1}{27} \\
\log _{3} 27=3 \\
\log _{3} \frac{1}{27}=3
\end{array}
$$

PRACTICE

3. Write the equation in exponential form.
$\log _{2} 128=7$ (1 point)

$$
\begin{gathered}
7=2^{7} \\
49=7^{2} \\
128=7^{7} \\
ץ 128=2^{7}
\end{gathered}
$$

4. Write the equation in exponential form.

$$
\log _{3} \frac{1}{9}=-2(1 \text { point })
$$

$$
\begin{aligned}
3 & =9^{-2} \\
\uparrow \frac{1}{9} & =3^{-2} \\
9 & =3^{2} \\
3 & =3^{1}
\end{aligned}
$$

PRACTICE

Evaluate the logarithm.

$\log _{2} 16$
$\log _{49} 7$
$\log _{5} 1$
$\log _{5}(-25)$

PRACTICE

Evaluate the logarithm.
$\log _{2} 16$
$\log _{49} 7$
$\log _{5} 1$
$\log _{5}(-25)$

4
$\frac{1}{2}$
0
undefined

Sometimes it gets a little more complex, so it's good to know a few rules:

Logarithm Rules

product rule: $\log _{b}(A B)=\log _{b} A+\log _{b} B$
quotient rule: $\log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B$
power rule: $\log _{b} A^{r}=r \log _{b} A$
corollary to the power rule: $\log _{b}\left(\frac{1}{A}\right)=-\log _{b}(A)$

These should remind you of the rules for exponents:		
$a^{0}=1$	$(a b)^{n}$	$=a^{n} b^{n}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$	$a^{m} \cdot a^{n}$	$=a^{m+n}$
$a^{-n}=\frac{1}{a^{n}}$	$\left(a^{m}\right)^{n}$	$=a^{m n}$
$\left(\frac{a}{b}\right)^{n}$	$=\frac{a^{n}}{b^{n}}$	

Use the rules to put this back together as one logarithm.
LET'S TRY THIS: Then change it to exponential form, and solve for x .

$$
\log _{4}(x+4)+\log _{4}(x-2)=2
$$

LET'STRYTHIS:

$$
2 \log 4-\log 3+2 \log x-4=0
$$

NOW TRY THESE:

$$
9^{8 x}=27 \quad 10^{6 x}=93
$$

Change it to the same base number ... or ... log both sides.

Find a common base, or, log both sides?

$$
64^{x}=256 \cdot 16^{x}
$$

Questions??

Review the Key Terms and Key Concepts documents for this unit.

Look up the topic at khanacademy.org and virtualnerd.com
Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at
jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard
to go over problems together.

