

ANALYTIC GEOMETRY

- the study of geometric figures using the coordinate plane
- and using algebraic equations to represent geometric shapes
"analyzing shapes on a graph with algebra"

Let's start with analyzing the length of simple line segments.

To get from one endpoint to the next, it shifts both horizontally and vertically. We can count how far for each shift.

You know what comes next for finding the length of the first segment...

The Pythagorean Theorem!

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
12^{2}+5^{2} & =c^{2} \\
144+25 & =c^{2} \\
169 & =c^{2} \\
13 & =c
\end{aligned}
$$

So, yes, this is taking us to the Distance Formula!

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & a^{2}+b^{2} & =c^{2} \\
12^{2}+5^{2} & =c^{2} & \left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} & =c^{2} \\
144+25 & =c^{2} & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & =c
\end{aligned}
$$

Next analysis is the Midpoint!

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

(-1, 9/2)

Your turn ...

$(-5,3)$ and $(3,-5)$
Distance = ?
Midpoint $=(?, ?)$

Your turn ...

$(-5,3)$ and (3, -5)
Distance $=8 \sqrt{ } 2$
Midpoint $=(-1,-1)$

CONIC SECTIONS

CIRCLE
ELLIPSE

PARABOLA
HYPERBOLA
... the intersections of a plane and a double right circular cone.

CONIC SECTIONS

General Equation of a Conic Section

The equation of every conic section can be written in the following form: $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, where A, B, C, D, E, and F are real numbers.
... This format covers all four conic section types.
... But how to tell which type from this format?

CONIC SECTIONS

General Equation of a Conic Section

The equation of every conic section can be written in the following form: $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, where A, B, C, D, E, and F are real numbers.

Identifying a Conic Section from Its General Equation

The discriminant of the equation is $B^{2}-4 A C$.

- If $B^{2}-4 A C>0$, the conic is a hyperbola.
- If $B^{2}-4 A C=0$, the conic is a parabola.
- If $B^{2}-4 A C<0$ and $A=C$, the conic is a circle.
- If $B^{2}-4 A C<0$ and $A \neq C$, the conic is an ellipse.

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
\begin{gathered}
y^{2}-8 x-10 y+1=0 \\
A x^{2}+B x y+C y^{2}+D x+E y+F=0
\end{gathered}
$$

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
\begin{gathered}
y^{2}-8 x-10 y+1=0 \\
A x^{2}+B x y+C y^{2}+D x+E y+F=0
\end{gathered}
$$

$$
A=0, B=0, \text { and } C=1
$$

$$
B^{2}-4 A C
$$

$$
0^{2}-4(0)(1)=0
$$

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
\begin{gathered}
y^{2}-8 x-10 y+1=0 \\
A x^{2}+B x y+C y^{2}+D x+E y+F=0
\end{gathered}
$$

$$
A=0, B=0, \text { and } C=1
$$

$$
B^{2}-4 A C
$$

$$
0^{2}-4(0)(1)=0
$$

PARABOLA

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
\begin{gathered}
(x+4)^{2}+(y-2)^{2}=3 \\
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \\
\left(x^{2}+8 x+16\right)+\left(y^{2}-4 y+4\right)=3 \\
x^{2}+y^{2}+8 x-4 y+17=0
\end{gathered}
$$

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
\begin{gathered}
(x+4)^{2}+(y-2)^{2}=3 \\
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \\
\left(x^{2}+8 x+16\right)+\left(y^{2}-4 y+4\right)=3 \\
x^{2}+y^{2}+8 x-4 y+17=0 \\
A=1, B=0, \text { and } C=1 \\
B^{2}-4 A C \\
0^{2}-4(1)(1)=-4
\end{gathered}
$$

Identifying CONIC SECTIONS

FROM GENERAL FORM

$$
(x+4)^{2}+(y-2)^{2}=3
$$

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

$$
\left(x^{2}+8 x+16\right)+\left(y^{2}-4 y+4\right)=3
$$

$$
x^{2}+y^{2}+8 x-4 y+17=0
$$

$$
A=1, B=0, \text { and } C=1
$$

$$
B^{2}-4 A C
$$

$$
0^{2}-4(1)(1)=-4
$$

CIRCLE

Questions??

Review the Key Terms and Key Concepts documents for this unit.
Look up the topic at khanacademy.org and virtualnerd.com
Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard to go over problems together.

