UNIT 7 LESSONS 1-5
 PRECALCULUSA

ARITHMETIC SEOUENCES \& SERIES

SEOUENCES

A sequence is a list of numbers that follows a consistent pattern.

The pattern can be written as a rule or formula.

NOTATION FOR SEQUENCES

- a_{n} is the term in position n, or the " nth " term
- a_{1} is the $1^{\text {st }}$ term, a_{2} is the $2^{\text {nd }}$ term, and so forth
- a_{n-1} is the previous term, a_{n+1} is the next term
- n is the term number, or, the position in the list (that is 1 for $1^{\text {st }}, 2$ for $2^{\text {nd }}, \ldots$)

ARITHMETIC SEQUENCE

Definition: an ordered list of numbers with a constant difference, that is, the same number gets added to each term to get the next term on the list.
d is the amount of the constant difference
For example, odd numbers have a constant difference of 2.

RULES: RECURSIVE \& EXPLICIT

A Recursive Rule describes the sequence by telling what you do to the term before to get the next term. It must also give the first number of the sequence as a starting point.

An Explicit Rule describes the sequence with what you do to the starting term directly based on which term position you need.

RECURSIVE RULE for an ARITHMETIC SEQUENCE

$$
a_{n}=a_{n-1}+d_{i} a_{1}=\mathrm{a}
$$

For example, the sequence $1,3,5,7, \ldots$ has a constant difference of 2 and the first term is the number 1 , so it's recursive rule would be:

$$
a_{n}=a_{n-1}+2 ; a_{1}=1
$$

RECURSIVE RULE for an ARITHMETIC SEQUENCE

For example, $a_{n}=a_{n-1}+2 ; a_{1}=1$

In other words ... "any term on this list is equal to the previous term plus 2, and we started at 1 ".

EXPLICIT RULE for an ARITHMETIC SEQUENCE

$$
a_{n}=a_{1}+(\mathrm{n}-1) \mathrm{d}
$$

For example, the same sequence $1,3,5,7, \ldots$ has the explicit rule of: $\quad a_{n}=1+(n-1) 2$

After distributing and simplifying, this rule can also be written as: $\quad a_{n}=2 n-1$

EXPLICIT RULE for an ARITHMETIC SEOUENCE

For example, $a_{n}=1+(n-1) 2$
In other words ... any term on this list is equal to the starting number $1+2$ times 1 less than the position number of the desired term.

Why $\mathrm{n}-1$? Because, for example, for the 10th term on the list, you've added the difference 9 times.

EXPLICIT RULE for an ARITHMETIC SEQUENCE

Let's look at a few example terms for $a_{n}=1+(\mathrm{n}-1) 2$

- $1^{\text {st }}$ term: $\mathrm{a}_{1}=1+(1-1) 2=1+(0) 2=1$
- $2^{\text {nd }}$ term: $\mathrm{a}_{2}=1+(2-1) 2=1+(1) 2=3 \ldots$ added 2 once
- $3^{\text {rd }}$ term: $a_{3}=1+(3-1) 2=1+(2) 2=5 \ldots$ added 2 twice
- $10^{\text {th }}$ term: $\mathrm{a}_{10}=1+(10-2) 2=1+(9) 2=19$
... added 2 nine times

ARITHMETIC MEAN

This is for finding the number between two terms of an Arithmetic Sequence.

$$
\frac{x+y}{2}
$$

For example, the number between 3 and 7 in the previous example sequence above is $\frac{3+7}{2}=5$.

SERIES

A Series is the sum of the terms of a Sequence.
So, essentially, just replace the commas with addition signs.

TYPES OF SERIES

Finite series have a limited number of terms.
For example, $1+3+5+7$ is a finite series.
Infinite series have an endless number of terms.
For example, $1+3+5+7+9+\ldots$ is an infinite series.

SIGMA NOTATION

This is the shorthand way for writing a series by giving the pattern for a sequence and which terms are being added.

Sigma (Σ) is the Greek letter for capital S, and is used to mean a sum. This notation can be used for describing any type of sequence that is being added as a series.

SIGMA NOTATION

Below the \sum is written the n value for the first position to be added in the series.

Above the \sum is written the n value for the last position to be added in the series.

To the right of the \sum is written the Explicit rule for the sequence being used in the summation.

SIGMA NOTATION

For example, this is the summation notation for adding the first 5 odd numbers.

$$
\sum_{n=1}^{5} 2 n-1
$$

Notice that the Explicit Rule is written in the version you get after distributing and simplifying $a_{n}=1+(n-1) 2$.

SIGMA NOTATION

$$
\sum_{n=1}^{5} 2 n-1
$$

In other words ... this means to start with plugging in 1 for n into $2 n-1$ to get the first term of the sequence. Then plug in 2 for n to get the second term, and so forth to get all five terms indicated. Then add these five terms to get the sum of this finite series.

NOTATION FOR SERIES

- S_{n} is the sum of the first n terms, and is called the nth partial sum
- n is the number of terms to be added
- a_{1} is the first number in the series
- a_{n} is the last number to be added in the series

SUM of a FINITE ARITHMETIC SERIES

The Arithmetic formula is: $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

For example, the sum of the first five odd numbers is:

$$
S_{5}=\frac{5}{2}(1+9)=25
$$

because the first number being added is 1 , the last number being added is 9 , and there are 5 numbers being added.

SUM of an INFINITE ARITHMETIC SERIES

This has an undefined result.
Adding a list that has no end and each number is
larger than the last has an ever-growing sum.
We call this a Divergent Series, as it never converges on a defined amount.

Questions??

Review the Key Terms and Key Concepts documents for this unit.
Look up the topic at khanacademy.org and virtualnerd.com
Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at jpattersonmath.youcanbook.me
We can use the LiveLesson whiteboard to go over problems together.

