

THE
UNIT
CIRCLE

Angles are measured in Radians \& Degrees.

Angles labeled for all the angles of the special right triangles:

The 45-45-90 Triangle The 30-60-90 Triangle

The 45-45-90 Right Triangle

The 30-60-90 Right Triangle

Remember, the three angles of a triangle always add up to 180°.

The 45-45-90 Right Triangle

Which could also be called
The $\pi / 4-\pi / 4-\pi / 2$ Triangle

The 30-60-90 Right Triangle

Which could also be called
The $\pi / 6-\pi / 3-\pi / 2$ Triangle

Remember, the three angles of a triangle always add up to $180^{\circ} \ldots$ or 1π radians.

The 45-45-90 Right Triangle
Which could also be called
The $\pi / 4-\pi / 4-\pi / 2$ Triangle

> But look at what these general ratios become when the hypotenuse is 1 .

The 30-60-90 Right Triangle

But look at what these general ratios become when the hypotenuse is 1 .

Which could also be called
The $\pi / 6-\pi / 3-\pi / 2$ Triangle

But look at what these general ratios become when the hypotenuse is 1 .
These are the numbers used on the UNIT CIRCLE !!
Which has a radius of 1 unit . . . And the radius becomes the hypotenuse!

Back to
 THE UNIT CIRCLE

Use this to find the exact ratio for any trig function of any of these special case angles.

BUT . . .
You will need to remember
SOH-CAH-TOA

AND . . .
Know some vocabulary

STANDARD POSITION ANGLE

$>$ Start the angle with one side along the positive x-axis.
$>$ Put the vertex of the angle at the origin.

- Rotate counter-clockwise to the full size of the angle.
$>$ Where the angle stops (or terminates) is the TERMINAL SIDE.

TRY IT:

SOH-CAH-TOA

What is $\sin 30 ?$

Hint:
Make the right triangle by drawing a vertical line from the point on the edge of the circle at 30° down to the x-axis.

TRY IT:

SOH-CAH-TOA

What is $\sin 30 ?$

Hint:
Make the right triangle by drawing a vertical line from the point on the edge of the circle at 30° down to the x-axis.

Sine = opposite/hypotenuse
$\operatorname{Sin} 30=1 / 2 / 1=1 / 2$

TRY IT:

SOH-CAH-TOA

What is $\cos 30$?

Hint:
-same angle,
different ratio

TRY IT:

SOH-CAH-TOA

What is cos $30 ?$

Hint:
-same angle, different ratio
**Leave it as the exact radical!!
Don't change it to a decimal unless it's asked for.

Cosine = adjacent/hypotenuse $\cos 30=(\sqrt{ } 3 / 2) / 1=\sqrt{ } 3 / 2$

TRY IT:

SOH-CAH-TOA

What is $\cos 120 ?$

Hint:
For obtuse angles, use the reference angle.

REFERENCE ANGLE

When an angle is greater than 90°, the challenge is how to draw the right triangle.

The REFERENCE ANGLE is the angle that is closest to the x-axis from the terminal side.

For example, a 300° angle has a reference angle of 60°.

TRY IT:

SOH-CAH-TOA

What is cos $120 ?$

See that the
coordinates at 120° are the same as at 60°, except for the signs!

TRY IT:

SOH-CAH-TOA

What is cos $\mathbf{1 2 0}$?

Remember to look at 60°
But use the signs from the
Unit Circle!

TRY IT:

SOH-CAH-TOA

What is cos $\mathbf{1 2 0}$?

Remember to look at 60°
But use the signs from the Unit Circle!

$$
\begin{aligned}
& \text { Cosine = adjacent/hypotenuse } \\
& \cos 120=-1 / 2 / 1=-1 / 2
\end{aligned}
$$

TRY IT:

SOH-CAH-TOA

What is tan $5 \pi / 4 ?$

Look at the reference angle, and watch the signs!

TRY IT:

SOH-CAH-TOA

What is $\tan 5 \pi / 4 ?$
Use the reference angle,

but match the signs to the Unit Circle!

TRY IT:

SOH-CAH-TOA

What is tan $5 \pi / 4$?

Use the reference angle, but match the signs to the Unit Circle!

Tangent $=$ opposite/adjacent $\tan 5 \pi / 4=(-\sqrt{ } 2 / 2) /(-\sqrt{ } 2 / 2)=1$

TRY IT:

SOH-CAH-TOA

What is $\sin 300 ?$

What is $\cos 300 ?$

Look at the
reference angle, and watch the signs!

TRY IT:

SOH-CAH-TOA

What is $\sin 300 ?$

What is $\cos 300 ?$
Remember to look at 60°
But use the signs from the Unit Circle!

Sine = opposite/hypotenuse $\sin 300=-\sqrt{ } 3 / 2$

Cosine = adjacent/hypotenuse $\cos 300=1 / 2$

TRY IT:

SOH-CAH-TOA

What is $\sin 300 ?$

What is $\cos 300 ?$
Remember to look at 60°
But use the signs from the Unit Circle!

Cosine = adjacent/hypotenuse
$\cos 120=-1 / 2 / 1=-1 / 2$

An easy way to remember the signs for each Quadrant . . .

Spell CAST

(for our cast of ratios)
Put A in Quadrant I where all ratios are positive.

An easy way to remember the signs for each Quadrant...

Spell CAST
(for our cast of ratios)
Arrange the rest counter-clockwise.

Quadrant II Sine
(\& Cosecant) are positive

Quadrant III
Tangent
(\& Cotangent) are positive

S

T

A Quadrant I are positive

Quadrant IV

Cosine
C
(\& Secant) are positive

TRY IT:

SOH-CAH-TOA

What is $\sin 390 ?$

Look at the coterminal angle!

COTERMINAL ANGLE

When a given angle measurement goes more than a full circle, just keep going until you see where it stops on the unit circle!
Or subtract a full circle (360° or 2π radians) until you get a unit circle angle.

NOTE: If you are given a negative angle, go clockwise!!

TRY IT:

SOH-CAH-TOA

What is $\sin 390 ?$

The coterminal angle is 30° because $390-360=30$

So, $\sin 390=\sin 30=1 / 2$

LAST ONE:

SOH-CAH-TOA

What is $\cos 3 \pi$?

Use the coterminal angle...

QUADRANTAL ANGLES

The angles at the Quadrant boundaries.

LAST ONE:

SOH-CAH-TOA

What is cos 3π ?

Use the coterminal
angle of 1π.

It is a "flat triangle"

The adjacent is the same as the hypotenuse for this angle spot,
And the opposite is 0 .

```
cos 3\pi}=\operatorname{cos}\pi=-
```


Your Tools \& Clues:

- SOH-CAH-TOA
- The Unit Circle
- Reference Angles
- Coterminal Angles
- Quadrantal Angles
- And check the signs!

Some test questions will require you to use multiples tools and clues! So take your time. ©

Review last weeks Tools \& Clues, too!

Questions??

Review the Key Terms and Key Concepts documents for this unit.

Look up the topic at khanacademy.org and virtualnerd.com

Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at
ipattersonmath.youcanbook.me
We can use the LiveLesson whiteboard to go over problems together!

