UNIT 2 LESSONS 3-5

PRECALCULUS B

	$>$ Period
	$>$ Amplitude
	$>$ Frequency
	$>$ Phase Shift
	$>$ Vertical Shift

PERIOD

The horizontal length of one cycle of the pattern is the PERIOD of the function.

AMPLITUDE

The vertical height from the mid-line to the max or min is the AMPLITUDE.

Remember - OSCILLATE

The function oscillates about the mid-line, alternating between the max and the min.

Period \& Amplitude

Both can have a stretch/compress factor.
$f(x)=a \sin (b x)$ or $f(x)=a \cos (b x)$

The amplitude is " a ".
... a vertical stretch/compress

The number of cycles in one of the standard periods is "b".
... a horizontal stretch/compress

Period \& Amplitude

Note that "b" is not the period!

It is the number of cycles in one of the standard periods for that function after the horizontal stretch/compress.

For $\sin \& \cos$, their standard period is 2π

FREQUENCY

When you change the number of cycles in the standard period distance, you've changed the frequency through a horizontal stretch or compress.

Frequency is the reciprocal of the Period.
A horizontal compression means more cycles in one interval. So, $|\mathrm{b}|>1$.

A horizontal stretch means fewer cycles in one interval. So, $|\mathrm{b}|<1$.

FREQUENCY

A horizontal compression increases the frequency. $|b|>1$.
A horizontal stretch decreases the frequency. $|\mathrm{b}|<1$.

$$
\begin{aligned}
& y=\sin (x) \\
& y=\sin (3 x) \\
& y=\sin \left(\frac{1}{3} x\right)
\end{aligned}
$$

Period \& Amplitude

TRY: $3 \cos (2 x)$

Amplitude $=$?
Period = ?

Period \& Amplitude

TRY: $3 \cos (2 x)$

Amplitude $=3$
Period $=1 \pi$
... because 2 cycles in the standard 2π means one cycle is half that length

Period \& Amplitude

Graph: $3 \cos (2 x)$
Amplitude $=3 \ldots$ a vertical stretch
Period $=1 \pi \ldots$ a horizontal compress

Period \& Amplitude

TRY: $5 \sin (x / 2)$

Amplitude $=$?
Period = ?

Period \& Amplitude

TRY: $5 \sin (x / 2)$

Amplitude $=5$
Period $=4 \pi$
... because $I / 2$ cycle in the standard 2π means one cycle is double that length

Period \& Amplitude

Graph: $5 \sin (x / 2)$
Amplitude $=5 \ldots$ a vertical stretch Period $=4 \pi \ldots$ a horizontal stretch

Period \& Amplitude

TRY: $4 \sec (x)$
Amplitude = ?
Period $=$?

Period \& Amplitude

TRY: $4 \sec (x)$
Amplitude = no max/min, so no amplitude
Period $=$ same as standard $=2 \pi$

Period \& Amplitude

TRY: $1 / 2 \tan (x)$
Amplitude $=$?
Period = ?

Period \& Amplitude

TRY: $1 / 2 \tan (\mathrm{x})$
Amplitude $=$ no \max or $\min =$ no amplitude
Period $=$ same as standard $=1 \pi$

Period \& Amplitude

All the trigonometric functions:

Function	Period	Amplitude
$f(x)=\sin x$	2π	1
$f(x)=\cos x$	2π	1
$f(x)=\tan x$	π	n/a
$f(x)=\csc x$	2π	n/a
$f(x)=\sec x$	2π	n/a
$f(x)=\cot x$	π	n/a

Period \& Amplitude

All the trigonometric functions:

Function	Period	Amplitude
$f(x)=\sin x$	2π	1
$f(x)=\cos x$	2π	1
$f(x)=\tan x$	π	n/a
$f(x)=\csc x$	2π	n/a
$f(x)=\sec x$	2π	n/a
$f(x)=\cot x$	π	n/a

Periodic Identities
$\sin (\theta+2 \pi n)=\sin \theta$
$\cos (\theta+2 \pi n)=\cos \theta$

Periodic Identities
$\tan (\theta+\pi n)=\tan \theta$
$\cot (\theta+\pi n)=\cot \theta$

Periodic Identities
$\csc (\theta+2 \pi n)=\csc \theta$ $\sec (\theta+2 \pi n)=\sec \theta$

Period \& Amplitude

All the trigonometric functions:

So, whatever the answer is for $\sin \theta$, will be the same answer for $\theta+2 \pi$, and for $\theta+4 \pi$, and so forth,
Periodic Identities $\sin (\theta+2 \pi n)=\sin \theta$ $\cos (\theta+2 \pi n)=\cos \theta$

Periodic Identities
$\tan (\theta+\pi n)=\tan \theta$
$\cot (\theta+\pi n)=\cot \theta$ because it's just another cycle around the unit circle!

Periodic Identities
$\csc (\theta+2 \pi n)=\csc \theta$
$\sec (\theta+2 \pi n)=\sec \theta$

Horizontal \& Vertical Shifts

...You knew shifts were coming next ...

As always, a horizontal shift is added or subtracted from the x in the middle of the function.

A vertical shift works the same as always, too. A vertical shift is added or subtracted at the end of the function.

Horizontal \& Vertical Shifts

General Equation

$$
y=a f(b x+c)+d
$$

" f " is for the function:
sin, cos, tan, cot, sec, csc
a is the vertical stretch or compress factor
b is the horizontal stretch or compress factor used to calculate the period
c is used to calculate the horizontal shift
d is the vertical shift

Phase Shift

This is the horizontal shift amount.
It is calculated from the general equation:

$$
y=a f(b x+c)+d
$$

Phase shift = -c/b

Because the horizontal shift is what is added to just Ix , not to x times something other than one.

So we are dividing each term in the parentheses by b so x has a coefficient of I

Phase Shift

This is the horizontal shift amount.
It is calculated from the general equation:

$$
y=a f(b x+c)+d
$$

Phase shift = -c/b

For example, $y=\sin (2 x+3)$
Adjust this to $\sin (x+3 / 2)$
to see that the horizontal shift
is $3 / 2$ to the left
OR just do $-\mathrm{c} / \mathrm{b}$ to get a phase shift of $-3 / 2$.

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude = ?
Period =
Frequency =
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude $=\mathrm{a}=3$
Period = ?
Frequency =
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude $=\mathrm{a}=3$
Period $=$ standard period $/ \mathrm{b}=2 \pi / 4=\pi / 2$
Frequency = ?
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude $=3$
Period $=2 \pi / 4=\pi / 2$
Frequency $=$ reciprocal of period $=2 / \pi$
Phase Shift = ?
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude $=3$
Period $=2 \pi / 4=\pi / 2$
Frequency $=2 / \pi$
Phase Shift $=-c / b=-(-5 \pi) / 4=+5 \pi / 4$ right
Vertical Shift = ?

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $3 \sin (4 x-5 \pi)+6$
Amplitude $=3$
Period $=2 \pi / 4=\pi / 2$
Frequency $=2 / \pi$
Phase Shift $=-(-5 \pi) / 4=+5 \pi / 4$ right
Vertical Shift = d=6 up

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

See: $3 \sin (4 x-5 \pi)+6$

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$?
Period =
Frequency =
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$ none, it's csc \ldots but it is vertically stretched + reflected
Period = ?
Frequency =
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$ none, i t's csc
Period $=2 \pi /(I / 2)=4 \pi$
Frequency = ?
Phase Shift =
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress
 $$
y=a f(b x+c)+d
$$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$ none, it's csc
Period $=2 \pi /(I / 2)=4 \pi$
Frequency $=1 /$ period $=1 / 4 \pi$
Phase Shift = ?
Vertical Shift =

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$ none, it's csc
Period $=2 \pi /(1 / 2)=4 \pi$
Frequency $=1 /$ period $=1 / 4 \pi$
Phase Shift $=-c / b=-(-\pi) /(1 / 2)=+2 \pi$ right
Vertical Shift = ?

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

TRY: $-3 \csc (1 / 2 x-\pi)+1$
Amplitude $=$ none, it's csc
Period $=2 \pi /(I / 2)=4 \pi$
Frequency $=1 /$ period $=1 / 4 \pi$
Phase Shift $=-c / b=-(-\pi) /(1 / 2)=+2 \pi$
Vertical Shift $=+$ I

Phase Shift \& Vertical Shift Stretch \& Compress $y=a f(b x+c)+d$

Graph: $-3 \csc (1 / 2 x-\pi)+1$
($-3 \csc \left(\frac{x}{2}-\pi\right)+1$

Asymptote Lines

Tip: For sec \& csc, check the where the reciprocal crosses its mid-line ...

