

PYTHAGOREAN IDENTITIES:

For right triangles in the Unit Circle,

- the hypotenuse is always 1 ,
- the side opposite is the sine of the central angle,
- the side adjacent is the cosine of the central angle.

PYTHAGOREAN IDENTITIES:

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

We can get two other versions of this identity by dividing every term by either sine or cosine.

PYTHAGOREAN IDENTITIES:

$$
\sin ^{\wedge} 2(\theta)+\cos \wedge 2(\theta)=1
$$

We can get two other versions of this identity by dividing every term by either sine or cosine.

SIMPLIFY THESE:
$\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \quad \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}$

PYTHAGOREAN IDENTITIES:

$$
\sin ^{\wedge} 2(\theta)+\cos \wedge 2(\theta)=1
$$

SIMPLIFY THESE:

$$
\begin{array}{ll}
\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} & \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
\left(\frac{\sin \theta}{\sin \theta}\right)^{2}+\left(\frac{\cos \theta}{\sin \theta}\right)^{2}=\left(\frac{1}{\sin \theta}\right)^{2} & \left(\frac{\sin \theta}{\cos \theta}\right)^{2}+\left(\frac{\cos \theta}{\cos \theta}\right)^{2}=\left(\frac{1}{\cos \theta}\right)^{2} \\
1+\cot ^{2} \theta=\csc ^{2} \theta & \tan ^{2} \theta+1=\sec ^{2} \theta
\end{array}
$$

Strategies:

YES, you may need to try more than one strategy to finally get a way to make it work!!

It is like doing a puzzle or a maze . . .
So, be patient and take your time!!

Working through the steps in the lesson examples will help train your brain to see possibilities for putting together these puzzles!

