

SUM \& DIFFERENCE FORMULAS

NOTE: $\sin (75)$ DOES NOT EQUAL $\sin (30)+\sin (45)!!$
$\sin (75) \approx 0.965$
$\sin (30)=0.5$
$\sin (45) \approx 0.707$
But $0.5+0.707=1.207 \ldots$ NOT $0.965!$!
$\sin (75)$ equals $\sin (30+45)$ \& there is a rule for that
Because adding the angles is not the same as adding the trig ratios.

SUM \& DIFFERENCE FORMULAS

Here are the Formulas:

Sum and Difference Formulas

1. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
2. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
3. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
4. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
5. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
6. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

SUM \& DIFFERENCE FORMULAS

Sum and Difference Formulas

1. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
2. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
3. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
4. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
5. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
6. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Translation:
a is the Greek letter alpha B is the Greek letter beta Both represent angles.

SUM \& DIFFERENCE FORMULAS

What similarities or differences
do you see in these formulas??
Sum and Difference Formulas

1. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
2. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
3. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
4. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
5. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
6. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

SUM \& DIFFERENCE FORMULAS

Sum and Difference Formulas

1. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
2. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
3. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
4. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
5. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
6. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Note . . . remember that tangent has asymptotes, so if the given angle is at an asymptote, then tangent is undefined and you can't use the tangent formulas!

SUM \& DIFFERENCE FORMULAS

Back to using these formulas . . .

$$
\begin{gathered}
\cos (75)=? ? \\
=\cos (30+45) \\
=\cos (30) \cdot \cos (45)-\sin (30) \cdot \sin (45) \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{gathered}
$$

SUM \& DIFFERENCE FORMULAS

$\cos (75)=\cos (30) \cdot \cos (45)-\sin (30) \cdot \sin (45)$

Remember,
$(x, y)=(\cos , \sin)$
$\cos 30=$
$\cos 45=$
$\sin 30=$ $\sin 45=$

SUM \& DIFFERENCE FORMULAS

$\cos (75)=\cos (30) \cdot \cos (45)-\sin (30) \cdot \sin (45)$

Remember,
$(x, y)=(\cos , \sin)$
$\cos 30=\sqrt{ } 3 / 2$
$\cos 45=\sqrt{ } 2 / 2$
$\sin 30=1 / 2$
$\sin 45=\sqrt{ } 2 / 2$

SUM \& DIFFERENCE FORMULAS

These also work with radians, of course, . . .

$$
\begin{aligned}
& \sin (\pi / 12) \\
& =\sin (\pi / 4-\pi / 6) \\
& =\sin (\pi / 4) \cos (\pi / 6)-\cos (\pi / 4) \sin (\pi / 6) \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

SUM \& DIFFERENCE FORMULAS

$\sin (\pi / 12)=\sin (\pi / 4) \cos (\pi / 6)-\cos (\pi / 4) \sin (\pi / 6)$

SUM \& DIFFERENCE FORMULAS

$\sin (\pi / 12)=\sin (\pi / 4) \cos (\pi / 6)-\cos (\pi / 4) \sin (\pi / 6)$

$$
\begin{aligned}
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Remember,
$(x, y)=(\cos , \sin)$
$\sin (\pi / 4)=\sqrt{ } 2 / 2$
$\cos (\pi / 6)=\sqrt{ } 3 / 2$
$\cos (\pi / 4)=\sqrt{ } 2 / 2$
$\sin (\pi / 6)=1 / 2$

COFUNCTION IDENTITIES

Cofunction Identities, radians

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-x\right)=\cos x \quad \cos \left(\frac{\pi}{2}-x\right)=\sin x \quad \sin \left(90^{\circ}-x\right)=\cos x \quad \cos \left(90^{\circ}-x\right)=\sin x \\
& \tan \left(\frac{\pi}{2}-x\right)=\cot x \quad \cot \left(\frac{\pi}{2}-x\right)=\tan x \quad \tan \left(90^{\circ}-x\right)=\cot x \quad \cot \left(90^{\circ}-x\right)=\tan x \\
& \sec \left(\frac{\pi}{2}-x\right)=\csc x \quad \csc \left(\frac{\pi}{2}-x\right)=\sec x \\
& \sec \left(90^{\circ}-x\right)=\csc x \quad \csc \left(90^{\circ}-x\right)=\sec x
\end{aligned}
$$

Remember, complementary angles add up to 90°, or in radians, add up to $\pi / 2$.

Train Your Brain:

Working through the steps in the lesson examples and figuring out what is done in each step will help train your brain to see possibilities for putting together the puzzles of new problems!

YES, you may need to try more than one strategy to find a way to make it work!!

It is like doing a puzzle or a maze . . .
Be patient with the process and take your time!

