UNIT 3 LESSON 4 Law of Sines

PRECALCULUS B

But what does it mean to "solve a triangle"???

To "solve a triangle" means to find the measurements of all three sides and all three angles!!!

We can "solve a triangle" for all six amounts . . .
IF we are given at least three of them to start with
. . . Well, usually . . .
Starting possibilities are:

- 3 angles
- 2 angles \& 1 side
- 1 angle \& 2 sides
- 3 sides

AND, this is for ANY triangle, not just right triangles!!

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

ASA means two angles and the included side between them.

NOTE: Angles are labeled with capital letters, sides with lower case letters.
And, the side opposite an angle will be the same letter.

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

We need to find the measurement of the third angle and the other two sides.
*The three angles of ANY triangle, always add up to 180° angle B is $180-(15+35)=180-50=130^{\circ}$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

Now, to solve for the other two sides, set up a proportion for each using the Law of Sines.

Law of Sines:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

NOTE: Using any two of the three ratios creates a proportion. And we know how to solve proportions!

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

Start with the ratio for the pair that you know the numbers for the angle and its opposite side.

$$
\frac{\sin B}{b}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

Pick which side to solve for, then set up the proportion:

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

Fill in the numbers you know . . . Then solve for the one that is left:

$$
\begin{gathered}
\frac{\sin B}{b}=\frac{\sin A}{a} \quad \frac{\sin 130^{\circ}}{80}=\frac{\sin 15^{\circ}}{a} \\
\frac{80 \sin 15^{\circ}}{\sin 130^{\circ}}=a \\
a \approx 27.0 \mathrm{ft} .
\end{gathered}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

TRY IT: Your turn to solve for the third side:

$$
\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

TRY IT: Your turn to solve for the third side:

$$
\frac{\sin B}{b}=\frac{\sin C}{c} \quad \frac{\sin 130^{\circ}}{80}=\frac{\sin 35^{\circ}}{c}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

TRY IT: Your turn to solve for the third side:

$$
\begin{aligned}
\frac{\sin B}{b}=\frac{\sin C}{c} \quad & \frac{\sin 130^{\circ}}{80}=\frac{\sin 35^{\circ}}{c} \\
& \frac{80 \sin 35^{\circ}}{\sin 130^{\circ}}=c \\
& c \approx 59.9 \mathrm{ft}
\end{aligned}
$$

$2^{\text {nd }}$ Case: Given 2 Angles \& 1 Side - ASA

The Triangle is Solved!

$3^{\text {rd }}$ Case: Given 2 Angles \& 1 Side - AAS

AAS means two angles and the side not included between them.
"Angle - Angle - Side"

NOTE: In this example, the angle given on the left is NOT inside the triangle.
What do you do to get the measurement of the inside angle??

The outside angle is supplementary to the inside angle,
so subtract from 180° to get the measure of the inside angle!!

$3^{\text {rd }}$ Case: Given 2 Angles \& 1 Side - AAS

This means the lower left inside angle is $180-87=93^{\circ}$
And now we can subtract the two inside angles from 180
to get the third inside angle: $180-(93+55)=32^{\circ}$

$3^{\text {rd }}$ Case: Given 2 Angles \& 1 Side - AAS

TRY IT: Set up the two sets of proportions . . .

$$
\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

$3^{\text {rd }}$ Case: Given 2 Angles \& 1 Side - AAS

Now solve each proportion:

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{\sin 55^{\circ}}{7.5}=\frac{\sin 32^{\circ}}{c} \\
& \frac{7.5 \sin 32^{\circ}}{\sin 55^{\circ}}=c
\end{aligned}
$$

$c \approx 4.9$ miles

$$
\begin{gathered}
\frac{\sin B}{b}=\frac{\sin A}{a} \\
\frac{\sin 55^{\circ}}{7.5}=\frac{\sin 93^{\circ}}{a} \\
\frac{7.5 \sin 93^{\circ}}{\sin 55^{\circ}}=a
\end{gathered}
$$

$a \approx 9.1$ miles

The Triangle is Solved!

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

SSA means two sides and the not included angle. "Side - Side - Angle"
**This is known as the Ambiguous Case!
Because the are 6 different ways this could turn out . . .

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A...

If angle A is acute,
And side \mathbf{b} is longer than side a,
So that angle C will be too high for side a to reach the bottom . . .

Then, NO triangle is possible to fit these numbers.

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A . . .

If angle A is acute, And side b is longer than side a, So that the height from angle C Will be equal to side a...

Then, one triangle will fit these numbers...
And it will be a right triangle.

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A...

If angle \mathbf{A} is acute,
And side a is longer than side b, And longer than the height . . .

Then, one triangle will fit these numbers.

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A...

If angle A is acute,
And side a is shorter than side b, But longer than the height . . .

Then, TWO triangles will fit these numbers.

Side a can land on either side of the height!

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A...

But if angle A is obtuse, And side a is shorter than or equal to side b, . . .

Then, NO triangle will fit these numbers.
Side a won't reach side c!

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A . . .

And if angle A is obtuse,
And side a is longer than side b . . .

Then, one triangle will fit these numbers.

$4^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SSA

Given fixed lengths for sides $a \& b$, and a fixed angle measurement for A . . .

When given SSA, always check how many, if any, solutions are possible!

If none, then there's no solving to do.
If two, then solve for both possibilities.

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

SAS means two sides and the included angle between them.
"Side - Angle - Side"

Notice that there is no ratio pair with both numbers given to start the Law of Sines.

So, we will need another new tool.
Law of Cosines ... coming up in Lesson 5!

$6^{\text {th }}$ Case: Given 3 Sides - SSS

SSS means all three sides, but no angles.
"Side - Side - Side"

74 in

This is another case for the Law of Cosines!
Again, you don't have a known angle and opposite side pair to start the Law of Sines.

