Representing Vectors Key Concepts

Representing Vectors Lesson

Component Form

The component form of a vector with initial point $P\left(p_{1}, p_{2}\right)$ and terminal point $Q\left(q_{1}, q_{2}\right)$ is given by $\mathbf{v}=\left\langle q_{1}-p_{1}, q_{2}-p_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ where v_{1} is the horizontal component and v_{2} is the vertical component.

The magnitude (or length) of \mathbf{v} is given by $\|\mathbf{v}\|=\sqrt{\left(q_{1}-p_{1}\right)^{2}+\left(q_{2}-p_{2}\right)^{2}}=\sqrt{\left(v_{1}\right)^{2}+\left(v_{2}\right)^{2}}$.

Equal Vectors

Two vectors are equal if the two vectors have the same magnitude and direction. Let $\mathbf{v}=\langle a, b\rangle$ and $\mathbf{w}=\langle c, d\rangle ; \mathbf{v}=\mathbf{w}$ if and only if $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=$ d.

Operations with Vectors Lesson

Vector Addition and Subtraction

If $\mathbf{v}=\langle a, b\rangle$ and $\mathbf{w}=\langle c, d\rangle$, then $\mathbf{v} \pm \mathbf{w}=\langle a, b\rangle \pm\langle c, d\rangle=\langle a \pm c, b \pm d\rangle$.

Scalar Multiplication

If $\mathbf{v}=\langle a, b\rangle$ and k is a real number, then $k \mathbf{v}=k\langle a, b\rangle=\langle k a, k b\rangle$ with a magnitude of $|k|\|\mathbf{v}\|$.

If $k>0$, then the direction of $k \mathbf{v}$ is the same as the direction of \mathbf{v}, and if $k<0$, then the direction of $k \mathbf{v}$ is the opposite of the direction of \mathbf{v}.

Unit Vectors Lesson

Writing Vectors as a Linear Combination of i and \mathbf{j}

If vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, then $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}$ where v_{1} and v_{2} are the horizontal and vertical components of \mathbf{v}, respectively.
If vector \mathbf{v} has initial point $P=\left(x_{1}, y_{1}\right)$ and terminal point $Q=\left(x_{2}, y_{2}\right)$, then $\mathbf{v}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}$.

Operations with Vectors in Terms of \mathbf{i} and \mathbf{j}

If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}, \mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$, and k is a real number, then

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j}, \\
& \mathbf{v}-\mathbf{w}=\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j}, \text { and } \\
& k \mathbf{v}=\left(k a_{1}\right) \mathbf{i}+\left(k b_{1}\right) \mathbf{j} .
\end{aligned}
$$

Finding a Unit Vector

The vector \mathbf{u} is a scalar multiple of the vector \mathbf{v}. The vector \mathbf{u} has a magnitude of 1 and the same direction as \mathbf{v}. The vector \mathbf{u} is called a unit vector in the direction of \mathbf{v}.
$\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$

Direction Angle Lesson

Find the Direction Angle

Let θ be the direction angle and α be the reference angle. Find θ by
finding the tangent of the reference angle, α.

$$
\tan \alpha=\left|\frac{v_{2}}{v_{1}}\right|
$$

When θ lies in quadrant I, $\theta=\alpha$.
When θ lies in quadrant II, $\theta=180-\alpha$.
When θ lies in quadrant III, $\theta=180+\alpha$.
When θ lies in quadrant IV, $\theta=360-\alpha$.

Writing Vectors in Terms of Magnitude and Direction

A vector $\mathbf{v}=\mathbf{a i}+\mathrm{bj}$ or $\langle a, b\rangle$ may be represented by its magnitude and direction as
$\mathbf{v}=\|\mathbf{v}\| \cos \theta \mathbf{i}+\|\mathbf{v}\| \sin \theta \mathbf{j}$ or
$\mathbf{v}=\langle\|\mathbf{v}\| \cos \theta,\|\mathbf{v}\| \sin \theta\rangle$,
where θ is the direction angle that measures the direction of the vector from the positive x-axis to \mathbf{v}.

Dot Product Lesson

Dot Product

If $\mathbf{u}=\left\langle a_{1}, b_{1}\right\rangle$ and $\mathbf{v}=\left\langle a_{2}, b_{2}\right\rangle$, then the dot product, also called a scalar product, is denoted $\mathbf{u} \cdot \mathbf{v}$.
$\mathbf{u} \cdot \mathbf{v}=a_{1} a_{2}+b_{1} b_{2}$
The product $\mathbf{u} \cdot \mathbf{v}$ is a scalar, or real number. It is not a vector.

Angle Between Two Vectors Lesson

The Angle Between Two Vectors

Given two vectors, \mathbf{u} and \mathbf{v}, and θ as the angle between vectors \mathbf{u} and \mathbf{v}, then $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$.
Therefore, to find the angle θ between two vectors \mathbf{u} and \mathbf{v},
$\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$, so
$\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$
where the angle θ is such that $0 \leq \theta \leq \pi$ or $0^{\circ} \leq \theta \leq 180^{\circ}$.

Orthogonal Vectors

Two vectors are orthogonal if the angle between them, θ, is equal to 90°. Since $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$ and $\cos 90^{\circ}=0$, then $\mathbf{u} \cdot \mathbf{v}=0$. Therefore, if the dot product of two vectors is zero, then the two vectors are orthogonal.

Work

The work done, W, on a force, \mathbf{F}, that moves an object from initial point P to terminal point Q can be calculated using the following formula:
$W=\mathbf{F} \cdot \overrightarrow{P Q}=\|\mathbf{F}\|\|\overrightarrow{P Q}\| \cos \theta$

