Looking Ahead to Calculus Key Concepts

Limit of a Function Lesson

Limit of a Function

If there is a number, *L*, such that the value of f(x) gets closer and closer to *L* as *x* gets closer to *a*, then *L* is called the limit of f(x) as *x* approaches *a*.

In symbols, this is represented as the following: $L = \lim f(x)$.

One-Sided Limits

A left-hand limit is represented with the notation $\lim_{x\to a^-} f(x) = L$, and indicates that as *x* approaches *a* from the left, but remains less than *a*, the values of f(x) get closer to *L*.

A right-hand limit is represented with the notation $\lim_{x\to a^+} f(x) = L$, and indicates that as *x* approaches *a* from the right, but remains greater than *a*, the values of f(x)get closer to *L*.

Unequal One-Sided Limits

The $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^{-}} f(x) = L$ and $\lim_{x\to a^{+}} f(x) = L$. In other words, if the left-hand limit and right-hand limit are not the same, then the limit does not exist.

Properties of Limits Lesson

Properties of Limits

Let *a* and *c* be real numbers, and let *k* be a whole number. Assume the $\lim f(x)$

and $\lim_{x \to a} g(x)$ exist.

Limit of a Constant Function	$\lim_{x \to a} c = c$
Limit of the Identity Function	$\lim_{x \to a} x = a$
Limit of a Sum	$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$

Limit of a Difference	$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$
Limit of a Product	$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
Limit of a Constant Multiple	$\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x)$
Limit of a Quotient	$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$
Limit of a Power	$\lim_{x \to a} x^k = a^k$

Continuity of Functions and Limits Lesson

Criteria for a Continuous Function

A function, f_i is continuous at a number, a_i when three conditions are met:

- The function f is defined at a so that f(a) is a real number.
- $\lim_{x \to a} f(x)$ exists
- $\lim_{x \to a} f(x) = f(a)$

Rate of Change Lesson

The Derivative of f at a

The slope of the tangent line to a curve, f, at (a, f(a)), or the derivative of f at a is defined by the following:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This limit also represents the slope of *f* at (a, f(a)) and the instantaneous rate of change of *f* at (a, f(a)).

Applications of the Derivative Lesson

Average Velocity

From time t = a to t = a + h, the change in an object's position is f(a+h) - f(a).

The average velocity, v_{avg} , is defined as the change in position over the change in time.

$$v_{\text{avg}} = \frac{f(a+h) - f(a)}{h}$$

Instantaneous Velocity

The instantaneous velocity of an object at a specific time, t, is the limit of the average velocity as h approaches 0, or the derivative of the object's position.

$$v(t) = f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

Acceleration

The acceleration of an object at a specific time, t, is defined as the rate at which the object's velocity is changing, or the derivative of the object's velocity at that time.

$$a(t) = v'(t) = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h}$$

