Looking Ahead to Calculus Key Concepts

Limit of a Function Lesson

Limit of a Function

If there is a number, L , such that the value of $f(x)$ gets closer and closer to L as x gets closer to a, then L is called the limit of $f(x)$ as x approaches a.

In symbols, this is represented as the following: $L=\lim _{x \rightarrow a} f(x)$.

One-Sided Limits

A left-hand limit is represented with the notation $\lim _{x \rightarrow a^{-}} f(x)=L$, and indicates that as x approaches a from the left, but remains less than a, the values of $f(x)$ get closer to L .

A right-hand limit is represented with the notation $\lim _{x \rightarrow a+} f(x)=L$, and indicates that as \times approaches a from the right, but remains greater than a, the values of $f(x)$ get closer to L .

Unequal One-Sided Limits

The $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$. In other words, if the left-hand limit and right-hand limit are not the same, then the limit does not exist.

Properties of Limits Lesson

Properties of Limits

Let a and c be real numbers, and let k be a whole number. Assume the $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist.

Limit of a Constant Function	$\lim _{x \rightarrow a} c=c$
Limit of the I dentity Function	$\lim _{x \rightarrow a} x=a$
Limit of a Sum	$\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$

Limit of a Difference	$\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
Limit of a Product	$\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
Limit of a Constant Multiple	$\lim _{x \rightarrow a} c \cdot f(x)=c \cdot \lim _{x \rightarrow a} f(x)$
Limit of a Quotient	$\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}, \lim _{x \rightarrow a} g(x) \neq 0$
Limit of a Power	$\lim _{x \rightarrow a} x^{k}=a^{k}$

Continuity of Functions and Limits Lesson

Criteria for a Continuous Function

A function, f, is continuous at a number, a, when three conditions are met:

- The function f is defined at a so that $f(a)$ is a real number.
- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)$

Rate of Change Lesson

The Derivative of \boldsymbol{f} at \boldsymbol{a}

The slope of the tangent line to a curve, f , at $(a, f(a))$, or the derivative of f at a is defined by the following:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This limit also represents the slope of f at $(a, f(a))$ and the instantaneous rate of change of f at $(a, f(a))$.

Applications of the Derivative Lesson

Average Velocity

From time $\mathrm{t}=\mathrm{a}$ to $\mathrm{t}=\mathrm{a}+\mathrm{h}$, the change in an object's position is $f(a+h)-f(a)$.
The average velocity, $v_{\text {avg }}$, is defined as the change in position over the change in time.

$$
v_{\mathrm{avg}}=\frac{f(a+h)-f(a)}{h}
$$

Instantaneous Velocity

The instantaneous velocity of an object at a specific time, t , is the limit of the average velocity as h approaches 0 , or the derivative of the object's position.
$v(t)=f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}$

Acceleration

The acceleration of an object at a specific time, t, is defined as the rate at which the object's velocity is changing, or the derivative of the object's velocity at that time.
$a(t)=v^{\prime}(t)=\lim _{h \rightarrow 0} \frac{v(t+h)-v(t)}{h}$

