3-D Figures:

Prism: $V=B h$
Pyramid: $V=\frac{1}{3} B h$
Cylinder: $V=\pi r^{2} h ; S A=2 \pi r h+2 \pi r^{2}$
Cone: $V=\frac{1}{3} \pi r^{2} h ; S A=s \pi r+\pi r^{2}$
Sphere: $V=\frac{4}{3} \pi r^{3} ; S A=4 \pi r^{2}=\pi d^{2}$

Polygon Interior/Exterior Angles:

Sum of int. angles $=180(n-2)$
Each int. angle (regular) $=\frac{180(n-2)}{n}$
Sum of ext. angles $=360$
Each ext. angle (regular) $=\frac{360}{n}$

Related Conditionals:

Converse: switch if and then
Inverse: negate if and then
Contrapositive: inverse of the converse (contrapositive has the same truth value as the original statement)

Pythagorean Theorem:

$c^{2}=a^{2}+b^{2}$
Converse: If the sides of a triangle satisfy $c^{2}=a^{2}+b^{2}$ then the triangle is a right triangle.

Regular Solids:

Tetrahedron - 4 faces
Cube - 6 faces
Octahedron - 8 faces
Dodecahedron - 12 faces
Icosahedron - 20 faces

Triangles:

By Sides:

Scalene - no congruent sides
Isosceles - 2 congruent sides
Equilateral - 3 congruent sides
By Angles:
Acute - all acute angles
Right - one right angle
Obtuse - one obtuse angle
Equiangular - 3 congruent angles(60°)
Equilateral \leftrightarrow Equiangular
Exterior angle of a triangle equals the sum of the 2 non-adjacent interior angles.

Mid-segment of a triangle is parallel to the third side and half the length of the third side.

Locus Theorems:

Fixed distance from point. Fixed distance from a line.

Equidistant from 2 points.

Equidistant from 2 intersecting lines

Congruent Triangles

SSS
NO donkey theorem
(SSA or ASS)
SAS

Similar Triangles:

AA
SSS for similarity
SAS for similarity
Corresponding sides of similar triangles are in proportion.

ASA
AAS
HL (right triangles only)
CPCTC (use after the triangles are congruent)

Inequalities:

--Sum of the lengths of any two sides of a triangle is greater than the length of the third side.
--Longest side of a triangle is opposite the largest angle.
--Exterior angle of a triangle is greater than either of the two non-adjacent interior angles.

Mean Proportional in Right Triangle:

Altitude Rule:
$\frac{\text { part hyp }}{\text { altitude }}=\frac{\text { altitude }}{\text { other part hyp }}$
Leg Rule:
$\frac{\text { hyp }}{\text { leg }}=\frac{\text { leg }}{\text { projection }}$

Parallels: If lines are parallel ...

Corresponding angles are equal.
$m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8$
Alternate Interior angles are equal.
$m<3=m<6, \quad m<4=m<5$
Alternate Exterior angles are equal.
$m<1=m<8, \quad m<2=m<7$
Same side interior angles are supp.
$m<3+m<5=180, \quad m<4+m<6=180$

Circle Segments

In a circle, a radius perpendicular to a chord bisects the chord.
Intersecting Chords Rule:
$($ segment part $) \cdot($ segment part $)=$ (segment part)•(segment part)
Secant-Secant Rule:
$($ whole secant $) \cdot($ external part $)=$
(whole secant)•(external part)
Secant-Tangent Rule:
$($ whole secant $) \cdot($ external part $)=(\text { tangent })^{2}$
Hat Rule: Two tangents are equal.

Quadrilaterals:

Parallelogram:

opp. sides parallel
opp sides =
opp angles =
consec. angles supp diag bis each other
Rectangle: add 4 rt angles, diag. = Rhombus: add $4=$ sides, diag. perp, diag bisect angles. Square: All from above.

Trapezoid:

Only one set parallel sides.

Median of trap is parallel to both bases and $=1 / 2$ sum bases. Isosceles Trap: legs = base angles = diagonals = opp angles supp

Transformations:

$r_{x-a x i s}(x, y)=(x,-y)$	\quad Glide
$r_{y-a x i s}(x, y)=(-x, y)$	reflection is
$r_{y=x}(x, y)=(y, x)$	composition
$r_{y=-x}(x, y)=(-y,-x)$	of a reflection
$r_{\text {origin }}(x, y)=(-x,-y)$	and a
$T_{a, b}(x, y)=(x+a, y+b)$	Isomslation.
$D_{k}(x, y)=(k x, k y)$	keeps length.
$R_{90^{\circ}}(x, y)=(-y, x)$	Orientation -
$R_{480^{\circ}}(x, y)=(-x,-y)$	label order
$R_{270^{\circ}}(x, y)=(y,-x)$	

Circle Angles:

Central angle $=$ arc
Inscribed angle = half arc

Angle by tangent/chord = half arc

Angle formed by 2 chords = half the sum of arcs

Angle formed by 2 tangents, or 2 secants, or a tangent/secant $=$ half the difference of arcs

Slopes and Equations:

$m=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
$y=m x+b$ slope-intercept
$y-y_{1}=m\left(x-x_{1}\right)$ point-slope

Coordinate Geometry Formulas:

Distance Formula:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint Formula:
$(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Circles:

Equation of circle center at origin: $x^{2}+y^{2}=r^{2}$ where r is the radius.
Equation of circle not at origin:
$(x-h)^{2}+(y-k)^{2}=r^{2}$ where (h, k) is the center and r is the radius.

