3-D Figures:	Regular Solids:	Locus Theorems: Fixed distance from point. Fixed distance from a line.			
Prism: $V = Bh$	Tetrahedron – 4 faces				
Pyramid: $V = \frac{1}{3}Bh$	Cube – 6 faces Octahedron – 8 faces	$\begin{pmatrix} d \\ p \end{pmatrix} \qquad \qquad$			
Cylinder: $V = \pi r^2 h$; $SA = 2\pi r h + 2\pi r^2$ Cone: $V = \frac{1}{3}\pi r^2 h$; $SA = s\pi r + \pi r^2$	Dodecahedron – 12 faces Icosahedron – 20 faces	Equidistant from 2 points. Equidistant 2 parallel lines.			
Cone: $V = \frac{1}{2}\pi r^2 h$; $SA = s\pi r + \pi r^2$					
Sphere: $V = \frac{4}{3}\pi r^3$; $SA = 4\pi r^2 = \pi d^2$	Triangles: By Sides: Scalene – no congruent sides Isosceles – 2 congruent sides Equilateral – 3 congruent sides	Equidistant from 2 intersecting lines			
Polygon Interior/Exterior Angles:	By Angles:	Congruent Triangles			
Sum of int. angles = $180(n-2)$	Acute – all acute angles	SSS NO donkey theorem			
Each int. angle (regular) = $\frac{180(n-2)}{n-2}$	Right – one right angle	SAS (SSA or ASS)			
Lach int. angle (regular) = $\frac{n}{n}$	Obtuse – one obtuse angle	ASA			
Sum of ext. angles $= 360$	Equiangular – 3 congruent angles(60°)	AAS HI (right triangles only)			
Each ext. angle (regular) = $\frac{360}{n}$	Equilateral \leftrightarrow Equiangular	HL (right triangles only)			
Each ext. angle (regular) = $\frac{n}{n}$	Exterior angle of a triangle equals the	CPCTC (use after the triangles are congruent)			
Related Conditionals:	sum of the 2 non-adjacent interior	Inequalities:			
Converse: switch if and then	angles.	Sum of the lengths of any two sides of a triangle is greater			
Inverse: negate if and then		 than the length of the third side. Longest side of a triangle is opposite the largest angle. Exterior angle of a triangle is greater than either of the 			
Contrapositive: inverse of the converse	Mid-segment of a triangle is parallel				
(contrapositive has the same truth value	to the third side and half the length of the third side.				
as the original statement)	the third side.	two non-adjacent interior angles.			
Pythagorean Theorem:	Similar Triangles:	Mean Proportional in Right Triangle:			
	AA	Altitude Rule: Leg Rule:			
$c^2 = a^2 + b^2$		e			
$c^2 = a^2 + b^2$ Converse: If the sides of a triangle	SSS for similarity	part hyp altitude hyp leg			
		$\frac{\text{part hyp}}{\text{altitude}} = \frac{\text{altitude}}{\text{other part hyp}} \qquad \frac{\text{hyp}}{\text{leg}} = \frac{\text{leg}}{\text{projection}}$			

Parallels: If lines are parallel	Quadrilaterals:		Transformations:	
Corresponding angles are equal. m<1=m<5, $m<2=m<6$, $m<3=m<7$, $m<4=m<8Alternate Interior angles are equal.m<3=m<6$, $m<4=m<5Alternate Exterior angles are equal.m<1=m<8$, $m<2=m<7Same side interior angles are supp.m<3 + m<5=180$, $m<4 + m<6=180$	Parallelogram: opp. sides parallel opp sides = opp angles = consec. angles supp diag bis each other Rectangle: add 4 rt angles, diag. = Rhombus: add 4 = sides, diag. perp, diag bisect angles. Square: All from above.	Trapezoid: Only one set parallel sides. Median of trap is parallel to both bases and = $\frac{1}{2}$ sum bases. Isosceles Trap: legs = base angles = diagonals = opp angles supp	$\begin{aligned} r_{x-axis}(x, y) &= (x, -y) \\ r_{y-axis}(x, y) &= (-x, y) \\ r_{y=x}(x, y) &= (y, x) \\ r_{y=-x}(x, y) &= (-y, -x) \\ r_{origin}(x, y) &= (-x, -y) \\ T_{a,b}(x, y) &= (x + a, y + b) \\ D_k(x, y) &= (x + a, y + b) \\ D_k(x, y) &= (x + a, y + b) \\ R_{90^*}(x, y) &= (-y, x) \\ R_{180^*}(x, y) &= (-x, -y) \\ R_{270^*}(x, y) &= (y, -x) \end{aligned}$	Glide reflection is composition of a reflection and a translation. Isometry – keeps length. Orientation – label order
Circle Segments In a circle, a radius perpendicular to a chord bisects the chord. Intersecting Chords Rule: (segment part)•(segment part) = (segment part)•(segment part) Secant-Secant Rule: (whole secant)•(external part) = (whole secant)•(external part) Secant-Tangent Rule: (whole secant)•(external part) = (tangent) ² Hat Rule: Two tangents are equal.	Circle Angles: Central angle = arc In $\overbrace{a_{n}}^{\circ}$ Angle formed by 2 chords = half the sum of arcs	<u> </u>		
Slopes and Equations: $m = \frac{vertical \ change}{horizontal \ change} = \frac{y_2 - y_1}{x_2 - x_1}.$ $y = mx + b \ \text{slope-intercept}$ $y - y_1 = m(x - x_1) \text{ point-slope}$	Coordinate Geometry Fo Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint Formula: $(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$		Circles: Equation of circle center at or $x^2 + y^2 = r^2$ where <i>r</i> is the rate Equation of circle not at origin $(x-h)^2 + (y-k)^2 = r^2$ where center and <i>r</i> is the radius.	dius. n: