Morgan's findings led to two remarkable conclusions. First, each chromosome is actually a group of linked genes. Second, Mendel's principle of independent assortment still holds true. It is the chromosomes, however, that assort independently, not individual genes. Alleles of different genes tend to be inherited together from one generation to the next when those genes are located on the same chromosome.

How did Mendel manage to miss gene linkage? By luck, or design, several of the genes he studied are on different chromosomes. Others are so far apart that they also assort independently.

Gene Mapping In 1911, a Columbia University student was working part time in Morgan's laThis student, Alfred Sturtevant, wondered if the frequency of crossing-over between genes during meiosis might be a clue to the genes' locations. Sturtevant reasoned that the farther apart two genes were on a chromosome, the more likely it would be that crossing-over would occur between them. If two genes are close together, then crossovers between them should be rare. If two genes are far apart, then crossovers between them should be more common. By this reasoning, he could use the frequency of crossing-over between genes to determine their distances from each other.

Sturtevant gathered up several notebooks of lab data and took them back to his room. The next morning, he presented Morgan with a gene map showing the relative locations of each known gene on one of the Drosophila chromosomes. Sturtevant's method has been used to construct gene maps, like the one in Figure 11–18, ever since this discovery.


End ofPage 329

Table of Contents

Miller & Levine Biology UNIT 1 The Nature of Life UNIT 2 Ecology UNIT 3 Cells UNIT 4 Genetics UNIT 5 Evolution UNIT 6 From Microorganisms to Plants UNIT 7 Animals UNIT 8 The Human Body A Visual Guide to The Diversity of Life Appendices Glossary Index Credits