Figure 12 Heavy water contains hydrogen-2 atoms, which have twice the mass of hydrogen-1 atoms. Using Tables At what temperature would a sample of heavy water freeze?

Table illustrating a comparison between ordinary and heavy water. The information is based on three properties: melting point, boiling point, and density at 25 degrees Celsius.d

Isotopes

In Dalton's atomic theory, all the atoms of a given element are identical. Every atom of a given element does have the same number of protons and electrons. But every atom of a given element does not have the same number of neutrons. Isotopes are atoms of the same element that have different numbers of neutrons and different mass numbers. Isotopes of an element have the same atomic number but different mass numbers because they have different numbers of neutrons.

For example, every atom of oxygen has 8 protons. Some oxygen atoms have 8 neutrons and a mass number of 16. Some oxygen atoms have 9 neutrons and a mass number of 17. Some oxygen atoms have 10 neutrons and a mass number of 18. When it is important to distinguish one oxygen isotope from another, the isotopes are referred to as oxygen-16, oxygen-17, and oxygen-18. All three oxygen isotopes can react with hydrogen to form water or combine with iron to form rust.

With most elements, it is hard to notice any differences in the physical or chemical properties of their isotopes. Hydrogen is an exception. Hydrogen-1 has no neutrons. (Almost all hydrogen is hydrogen-1.) Hydrogen-2 has one neutron, and hydrogen-3 has two neutrons. Because a hydrogen-1 atom has only one proton, adding a neutron doubles its mass. Water that contains hydrogen-2 atoms in place of hydrogen-1 atoms is called heavy water. Figure 12 compares some physical properties of ordinary water and heavy water.


End ofPage 112

Table of Contents

Physical Science CHAPTER 1 Science Skills CHAPTER 2 Properties of Matter CHAPTER 3 States of Matter CHAPTER 4 Atomic Structure CHAPTER 5 The Periodic Table CHAPTER 6 Chemical Bonds CHAPTER 7 Chemical Reactions CHAPTER 8 Solutions, Acids, and Bases CHAPTER 9 Carbon Chemistry CHAPTER 10 Nuclear Chemistry CHAPTER 11 Motion CHAPTER 12 Forces and Motion CHAPTER 13 Forces in Fluids CHAPTER 14 Work, Power, and Machines CHAPTER 15 Energy CHAPTER 16 Thermal Energy and Heat CHAPTER 17 Mechanical Waves and Sound CHAPTER 18 The Electromagnetic Spectrum and Light CHAPTER 19 Optics CHAPTER 20 Electricity CHAPTER 21 Magnetism CHAPTER 22 Earth's Interior CHAPTER 23 Earth's Surface CHAPTER 24 Weather and Climate CHAPTER 25 The Solar System CHAPTER 26 Exploring the Universe Skills and Reference Handbook