The speed of a wave can change if it enters a new medium or if variables such as pressure and temperature change. However, for many kinds of waves, the speed of the waves is roughly constant for a range of different frequencies. If you assume that waves are traveling at a constant speed, then wavelength is inversely proportional to frequency. What does this mean for two waves with different frequencies? The wave with the lower frequency has a longer wavelength.


End ofPage 506

Table of Contents

Physical Science CHAPTER 1 Science Skills CHAPTER 2 Properties of Matter CHAPTER 3 States of Matter CHAPTER 4 Atomic Structure CHAPTER 5 The Periodic Table CHAPTER 6 Chemical Bonds CHAPTER 7 Chemical Reactions CHAPTER 8 Solutions, Acids, and Bases CHAPTER 9 Carbon Chemistry CHAPTER 10 Nuclear Chemistry CHAPTER 11 Motion CHAPTER 12 Forces and Motion CHAPTER 13 Forces in Fluids CHAPTER 14 Work, Power, and Machines CHAPTER 15 Energy CHAPTER 16 Thermal Energy and Heat CHAPTER 17 Mechanical Waves and Sound CHAPTER 18 The Electromagnetic Spectrum and Light CHAPTER 19 Optics CHAPTER 20 Electricity CHAPTER 21 Magnetism CHAPTER 22 Earth's Interior CHAPTER 23 Earth's Surface CHAPTER 24 Weather and Climate CHAPTER 25 The Solar System CHAPTER 26 Exploring the Universe Skills and Reference Handbook